题目内容
【题目】如图,在直四棱柱中,,,.
(1)求证:平面平面;
(2)当时,直线与平面所成的角能否为?并说明理由.
【答案】(1)证明见解析;(2)答案见解析.
【解析】
(1)由题意结合几何关系可证得,,
又,所以平面,
又平面,所以平面平面.
(2)设,以为原点,建立空间直角坐标系,不妨设,,据此可得平面的法向量为,若满足题意,则,据此可得,矛盾,故直线与平面所成的角不可能为.
(1)证明:因为,,所以为正三角形,
所以,又,为公共边,所以,
所以,所以.
又四棱柱为直棱柱,所以,
又,所以平面,
又平面,所以平面平面.
(2)直线与平面所成的角不可能为.
设,以为原点,建立空间直角坐标系如图所示,
不妨设,,则,,
,,,,
,,,
设平面的法向量为,
则,即,
解得.
令,得,
若直线与平面所成的角为,
则,
整理得,矛盾,故直线与平面所成的角不可能为.
【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中.
(1)根据散点图判断,与哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立关于的回归方程;
(3)若旋转的弧度数与单位时间内煤气输出量成正比,那么为多少时,烧开一壶水最省煤气?
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.
【题目】某市交管部门为了宣传新交规举办交通知识问答活动,随机对该市15~65岁的人群抽样,回答问题统计结果如图表所示.
组别 | 分组 | 回答正确的人数 | 回答正确的人数占本组的概率 |
第1组 | [15,25) | 5 | 0.5 |
第2组 | [25,35) | 0.9 | |
第3组 | [35,45) | 27 | |
第4组 | [45,55) | 0.36 | |
第5组 | [55,65) | 3 |
(1)分别求出的值;
(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.