题目内容
【题目】已知椭圆的离心率,为椭圆的右焦点,,为椭圆的上、下顶点,且的面积为.
(1)求椭圆的方程;
(2)动直线与椭圆交于,两点,证明:在第一象限内存在定点,使得当直线与直线的斜率均存在时,其斜率之和是与无关的常数,并求出所有满足条件的定点的坐标.
【答案】(1)1;(2)证明见解析,(1,)
【解析】
(1)设椭圆的半焦距为,由,,的关系和三角形的面积公式,结合离心率公式,解方程可得,,进而得到椭圆方程;
(2)设,,,,,联立直线和椭圆方程,运用韦达定理和判别式大于0,以及斜率公式,化简计算,考虑它的和为常数,可令的系数为0,进而得到的坐标.
解:(1)设椭圆的半焦距为,则,
又由的面积为,可得,解得,或,
离心率,则时,,舍去,
则,,所以椭圆的方程为;
(2)证明:设,,,,,
将直线代入椭圆可得,
由,可得,则有,,
为与无关的常数,
可得当,时,斜率的和恒为0,解得或(舍去),
综上所述,在第一象限内满足条件的定点的坐标为.
【题目】2018年3月5日上午,李克强总理做政府工作报告时表示,将新能源汽车车辆购置税优惠政策再延长三年,自2018年1月1日至2020年12月31日,对购置的新能源汽车免征车辆购置税.新能源汽车销售的春天来了!从衡阳地区某品牌新能源汽车销售公司了解到,为了帮助品牌迅速占领市场,他们采取了保证公司正常运营的前提下实行薄利多销的营销策略(即销售单价随日销量(台)变化而有所变化),该公司的日盈利(万元),经过一段时间的销售得到,的一组统计数据如下表:
日销量台 | 1 | 2 | 3 | 4 | 5 |
日盈利万元 | 6 | 13 | 17 | 20 | 22 |
将上述数据制成散点图如图所示:
(1)根据散点图判断与中,哪个模型更适合刻画,之间的关系?并从函数增长趋势方面给出简单的理由;
(2)根据你的判断及下面的数据和公式,求出关于的回归方程,并预测当日销量时,日盈利是多少?
参考公式及数据:线性回归方程,其中,;
,,
,.