ÌâÄ¿ÄÚÈÝ
ÒÑÖªÒ»ÁзÇÁãÏòÁ¿
Âú×㣺
=(x1£¬y1)£¬
=(xn£¬yn)=
(xn-1-yn-1£¬xn-1+yn-1)(n¡Ý2)£®
£¨¢ñ£©Ö¤Ã÷£º{|
|}ÊǵȱÈÊýÁУ»
£¨¢ò£©ÇóÏòÁ¿
n-1Óë
nµÄ¼Ð½Ç(n¡Ý2)£»
£¨¢ó£©Éè
1=(1£¬2)£¬°Ñ
£¬
£¬¡£¬
£¬¡ÖÐËùÓÐÓë
¹²ÏßµÄÏòÁ¿°´ÔÀ´µÄ˳ÐòÅųÉÒ»ÁУ¬¼ÇΪ
£¬
£¬¡£¬
£¬¡£¬Áî
n=
+
+¡+
£¬0Ϊ×ø±êԵ㣬ÇóµãÁÐ{Bn}µÄ¼«ÏÞµãBµÄ×ø±ê£®
£¨×¢£ºÈôµãBn×ø±êΪ(tn£¬sn)£¬ÇÒ
tn=t£¬
sn=s£¬Ôò³ÆµãB(t£¬s)ΪµãÁÐ{Bn}µÄ¼«Ï޵㣮£©
an |
a1 |
an |
1 |
2 |
£¨¢ñ£©Ö¤Ã÷£º{|
an |
£¨¢ò£©ÇóÏòÁ¿
a |
a |
£¨¢ó£©Éè
a |
a1 |
a2 |
an |
a1 |
b1 |
b2 |
. |
bn |
OB |
b1 |
b2 |
bn |
£¨×¢£ºÈôµãBn×ø±êΪ(tn£¬sn)£¬ÇÒ
lim |
n¡ú¡Þ |
lim |
n¡ú¡Þ |
£¨I£©|
|=
=
•
=
|
n-1|£¬(n¡Ý2)£¬Ê×Ïî|
|=
¡Ù0£¬
=
Ϊ³£Êý£¬¡à{|
|}ÊǵȱÈÊýÁУ®
£¨II£©
n-1•
n=(xn-1£¬yn-1)•
(xn-1-yn-1£¬xn-1+yn-1)=
(
+
)=
|
n-1|2£¬cos£¼
n-1£¬
n£¾=
=
=
£¬¡à
n-1Óë
nµÄ¼Ð½ÇΪ
£®
£¨III£©
=(x1£¬y1)£¬
=
(x1-y1£¬x1+y1)£¬
=
(-2y1£¬2x1)=
(-y1£¬x1)£¬
=
(-y1-x1£¬-y1+x1)£¬
=
(-2x1£¬-2y1)=-
(x1£¬y1)£¬¡à
¡Î
¡Î
¡ÎÒ»°ãµØ£¬
=
£¬
=
£¬£¬
=
4n-3£¬
ÓÃÊýѧ¹éÄÉ·¨Ò×Ö¤
n=
4n-3³ÉÁ¢¡à
n=(-
)n-1(x1£¬y1)£®
Éè
=(tn£¬sn)Ôòtn=[1+(-
)+(-
)2+¡+(-
)n-1]x1=
=
[1-(-
)n]£¬
tn=
£»
sn=[1+(-
)+(-
)2+¡+(-
)n-1]y1=
•2=
[1-(-
)n]£¬
sn=
£¬
¡à¼«ÏÞµãBµÄ×ø±êΪ(
£¬
)£®
an |
1 |
2 |
(xn-1-yn-1)2+(xn-1+yn-1)2 |
=
| ||
2 |
|
| ||
2 |
a |
a1 |
|
|
| ||
|
|
| ||
2 |
an |
£¨II£©
a |
a |
1 |
2 |
1 |
2 |
x | 2n-1 |
y | 2n-1 |
1 |
2 |
a |
a |
a |
| ||||
|
|
| ||||||||
|
|
| ||
2 |
a |
a |
¦Ð |
4 |
£¨III£©
a1 |
a2 |
1 |
2 |
a3 |
1 |
4 |
1 |
2 |
a4 |
1 |
4 |
a5 |
1 |
8 |
1 |
4 |
a1 |
a5 |
a9 |
b1 |
a1 |
b2 |
a5 |
bn |
a |
ÓÃÊýѧ¹éÄÉ·¨Ò×Ö¤
b |
a |
b |
1 |
4 |
Éè
OBn |
1 |
4 |
1 |
4 |
1 |
4 |
1-(-
| ||
1-(-
|
4 |
5 |
1 |
4 |
lim |
n¡ú¡Þ |
4 |
5 |
sn=[1+(-
1 |
4 |
1 |
4 |
1 |
4 |
1-(-
| ||
1-(-
|
8 |
5 |
1 |
4 |
lim |
n¡ú¡Þ |
8 |
5 |
¡à¼«ÏÞµãBµÄ×ø±êΪ(
4 |
5 |
8 |
5 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿