题目内容
(1)设x>y>z,n∈R*,且
+
≥
恒成立,求n的最大值.
(2)已知函数f(x)=2x的反函数是f-1(x),若f-1(a)+f-1(b)=4(a,b∈R*),求
+
的最小值.
1 |
x-y |
1 |
y-z |
n |
x-z |
(2)已知函数f(x)=2x的反函数是f-1(x),若f-1(a)+f-1(b)=4(a,b∈R*),求
1 |
a |
4 |
b |
分析:(1)由x>y>z,n∈R*原不等式可等价变形为n≤
+
再配凑为
+
=
+
,利用基本不等式求最值.
(2)反函数f-1(x)=
.f-1(a)+f-1(b)=
+
=4,a+b=8.从而,
+
=
(a+b)(
+
)=
(1+4+
+
)≥
(5+2
)=
.
x-z |
x-y |
x-z |
y-z |
x-z |
x-y |
x-z |
y-z |
x-y+y-z |
x-y |
x-y+y-z |
y-z |
(2)反函数f-1(x)=
x |
2 |
a |
2 |
b |
2 |
1 |
a |
4 |
b |
1 |
8 |
1 |
a |
4 |
b |
1 |
8 |
b |
a |
4a |
b |
1 |
8 |
|
9 |
8 |
解答:解:(1)∵x>y>z,n∈R*∴原不等式可等价变形为n≤
+
+
=
+
=1+
+
≥2
+2=4,∴n不能大于
+
的最小值4,∴n的最大值是4.
(2)由函数f(x)=2x可得,反函数f-1(x)=
.
∴f-1(a)+f-1(b)=
+
=4,a+b=8.从而,
+
=
(a+b)(
+
)=
(1+4+
+
)≥
(5+2
)=
.
x-z |
x-y |
x-z |
y-z |
x-z |
x-y |
x-z |
y-z |
x-y+y-z |
x-y |
x-y+y-z |
y-z |
y-z |
x-y |
x-y |
y-z |
|
x-z |
x-y |
x-z |
y-z |
(2)由函数f(x)=2x可得,反函数f-1(x)=
x |
2 |
∴f-1(a)+f-1(b)=
a |
2 |
b |
2 |
1 |
a |
4 |
b |
1 |
8 |
1 |
a |
4 |
b |
1 |
8 |
b |
a |
4a |
b |
1 |
8 |
|
9 |
8 |
点评:本题考查基本不等式的应用:求最值.基本不等式求最值时要注意三个原则:一正,即各项的取值为正;二定,即各项的和或积为定值;三相等,即要保证取等号的条件成立
练习册系列答案
相关题目