题目内容

(1)设x>y>z,n∈R*,且
1
x-y
+
1
y-z
n
x-z
恒成立,求n的最大值.
(2)已知函数f(x)=2x的反函数是f-1(x),若f-1(a)+f-1(b)=4(a,b∈R*),求
1
a
+
4
b
的最小值.
分析:(1)由x>y>z,n∈R*原不等式可等价变形为n≤
x-z
x-y
+
x-z
y-z
再配凑为
x-z
x-y
+
x-z
y-z
=
x-y+y-z
x-y
+
x-y+y-z
y-z
,利用基本不等式求最值.
(2)反函数f-1(x)=
x
2
f-1(a)+f-1(b)=
a
2
+
b
2
=4
,a+b=8.从而,
1
a
+
4
b
=
1
8
(a+b)(
1
a
+
4
b
)=
1
8
(1+4+
b
a
+
4a
b
)≥
1
8
(5+2
b
a
4a
b
)=
9
8
解答:解:(1)∵x>y>z,n∈R*∴原不等式可等价变形为n≤
x-z
x-y
+
x-z
y-z
x-z
x-y
+
x-z
y-z
=
x-y+y-z
x-y
+
x-y+y-z
y-z
=1+
y-z
x-y
+
x-y
y-z
≥2
y-z
x-y
x-y
y-z
+2=4
,∴n不能大于
x-z
x-y
+
x-z
y-z
的最小值4,∴n的最大值是4.
(2)由函数f(x)=2x可得,反函数f-1(x)=
x
2

f-1(a)+f-1(b)=
a
2
+
b
2
=4
,a+b=8.从而,
1
a
+
4
b
=
1
8
(a+b)(
1
a
+
4
b
)=
1
8
(1+4+
b
a
+
4a
b
)≥
1
8
(5+2
b
a
4a
b
)=
9
8
点评:本题考查基本不等式的应用:求最值.基本不等式求最值时要注意三个原则:一正,即各项的取值为正;二定,即各项的和或积为定值;三相等,即要保证取等号的条件成立
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网