题目内容
78、如图,过抛物线y2=4x的焦点F的直线交抛物线与圆(x-1)2+y2=1于A,B,C,D四点,则|AB|•|CD|=
1
.分析:当直线过焦点F且垂直于x轴时,|AD|=2p=4,|BC|=2r=2,由抛物线与圆的对称性知:|AB|=|CD|=1,所以|AB|•|CD|=1.
解答:解:由特殊化原则,
当直线过焦点F且垂直于x轴时,
|AD|=2p=4,
|BC|=2r=2,
由抛物线与圆的对称性知:
|AB|=|CD|=1,
所以|AB|•|CD|=1;
故答案为1.
当直线过焦点F且垂直于x轴时,
|AD|=2p=4,
|BC|=2r=2,
由抛物线与圆的对称性知:
|AB|=|CD|=1,
所以|AB|•|CD|=1;
故答案为1.
点评:本题考查圆的性质和应用,解题时恰当地选取取特殊值,能够有效地简化运算.
练习册系列答案
相关题目