题目内容
设A={x|-4<x<-},B={x|x≤-4},求A∪B,A∩B,(RA)∩(RB),R(A∪B).?解:A∪B={x|-4<x<-}∪{x|x≤-4}={x|x<-},
A∩B={x|-4<x<-}∩{x|x≤-4}=
(RA)∩(RB)={x|x≤-4或x≥-}∩{x|x>-4}={x|x≥-}.
R(A∪B)={x|x≥-}.
练习册系列答案
相关题目
设
A={x|-4<x<2},B={x|-m-1<x<m-1,m>0}.求分别满足下列条件的m的取值集合:
(1)AB ; |
(2)A∩B≠ . |