题目内容

设集合P={x|
x
x-1
≤0
},Q={x|log3x<1},那么“m∈P”是“m∈Q”的(  )
分析:先求出集合P,Q的元素,利用集合元素的关系确定条件关系.
解答:解:P={x|
x
x-1
≤0
}={x|0≤x<1},Q={x|log3x<1}={x|0<x<3}.
所以“m∈P”是“m∈Q”的既不充分也不必要条件.
故选D.
点评:本题主要考查充分条件和必要条件的判断,先化简集合,利用元素之间的关系进行判断是解决本题的关键,要注意分数函数的分母不能等于0.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网