题目内容
已知Sn是正数数列{an}的前n项和,S12,S22、…、Sn2…,是以3为首项,以1为公差的等差数列;数列{bn}为无穷等比数列,其前四项之和为120,第二项与第四项之和为90.(1)求an、bn;(2)从数列{![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_ST/1.png)
【答案】分析:(1)根据{Sn2}是以3为首项,以1为公差的等差数列求出通项公式,得到Sn,然后根据an=
进行求解,根据{bn}是等比数列,求出首项和公比即可求出bn;
(2)设可以挑出一个无穷等比数列{cn},首项为c1=(
)p,公比为(
)k,(p、k∈N),它的各项和等于
=
,建立等式关系,讨论p和k的大小,从而求出满足条件的等比数列.
解答:解:(1){Sn2}是以3为首项,以1为公差的等差数列;所以Sn2=3+(n-1)=n+2
因为an>0,所以Sn=
(n∈N)(2分)
当n≥2时,an=Sn-Sn-1=
-![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/7.png)
又a1=S1=
,所以an=
(n∈N) (4分)
设{bn}的首项为b1,公比为q,则有
(6分)
所以
,所以bn=3n(n∈N)(8分)
(2)
=(
)n,设可以挑出一个无穷等比数列{cn},首项为c1=(
)p,公比为(
)k,(p、k∈N),它的各项和等于
=
,(10分)
则有
,所以(
)p=
[1-(
)k],(12分)
当p≥k时3p-3p-k=8,即3p-k(3k-1)=8,因为p、k∈N,所以只有p-k=0,k=2时,
即p=k=2时,数列{cn}的各项和为
. (14分)
当p<k时,3k-1=8.3k-p,因为k>p右边含有3的因数,而左边非3的倍数,不存在p、k∈N,
所以唯一存在等比数列{cn},首项为
,公比为
,使它的各项和等于
.(16分)
点评:本题主要考查了数列的通项公式,以及等比数列的求和等有关知识,属于中档题.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/0.png)
(2)设可以挑出一个无穷等比数列{cn},首项为c1=(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/4.png)
解答:解:(1){Sn2}是以3为首项,以1为公差的等差数列;所以Sn2=3+(n-1)=n+2
因为an>0,所以Sn=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/5.png)
当n≥2时,an=Sn-Sn-1=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/7.png)
又a1=S1=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/9.png)
设{bn}的首项为b1,公比为q,则有
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/10.png)
所以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/11.png)
(2)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/17.png)
则有
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/21.png)
当p≥k时3p-3p-k=8,即3p-k(3k-1)=8,因为p、k∈N,所以只有p-k=0,k=2时,
即p=k=2时,数列{cn}的各项和为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/22.png)
当p<k时,3k-1=8.3k-p,因为k>p右边含有3的因数,而左边非3的倍数,不存在p、k∈N,
所以唯一存在等比数列{cn},首项为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182835195605947/SYS201310241828351956059020_DA/25.png)
点评:本题主要考查了数列的通项公式,以及等比数列的求和等有关知识,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目