题目内容
8.如果对任意实数x、y都有f(x+y)=f(x)•f(y)且f(1)=2(1)求f(2)、f(3)、f(4)的值;
(2)求$\frac{f(2)}{f(1)}$+$\frac{f(3)}{f(2)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2015)}{f(2014)}$的值.
分析 (1)利用赋值法即可求f(2)、f(3)、f(4)的值;
(2)令y=1,得$\frac{f(x+1)}{f(x)}=2$,即可求$\frac{f(2)}{f(1)}$+$\frac{f(3)}{f(2)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2015)}{f(2014)}$的值.
解答 解:(1)∵f(x+y)=f(x)•f(y)且f(1)=2,
∴f(2)=f(1+1)=f(1)f(1)=2×2=4、
f(3)=f(1+2)=f(1)f(2)=2×4=8、
f(4)=f(2+2)=f(2)f(2)=4×4=16.
(2)令y=1,则f(x+1)=f(x)•f(1)=2f(x),
即$\frac{f(x+1)}{f(x)}=2$,
则$\frac{f(2)}{f(1)}$+$\frac{f(3)}{f(2)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2015)}{f(2014)}$=2+2+…2=2×2014=4028.
点评 本题主要考查函数值的计算,利用赋值法是解决抽象函数的常用方法.
练习册系列答案
相关题目
5.设集合A={x|x<3},集合B={x|$\frac{2}{9-x}$>0},则(∁RA)∩B等于( )
A. | (3,9) | B. | [3,9] | C. | (3,9] | D. | [3,9) |
10.f(x)=Asin(ωx+φ)(A>0,ω>0)在x=1处取最大值,则( )
A. | f(x-1)一定是奇函数 | B. | f(x-1)一定是偶函数 | ||
C. | f(x+1)一定是奇函数 | D. | y=f(x+1)一定是偶函数 |