题目内容

(2013•河东区二模)已知正项数列{an}中,a1=6,点An(an
an+1
)
在抛物线y2=x+1上;数列{bn}中,点Bn(n,bn)在过点(0,1),以方向向量为(1,2)的直线上.
(Ⅰ)求数列{an},{bn}的通项公式;(文理共答)
(Ⅱ)若f(n)=
an,(n为奇数)
bn,(n为偶数)
,问是否存在k∈N,使f(k+27)=4f(k)成立,若存在,求出k值;若不存在,说明理由;(文理共答)
(Ⅲ)对任意正整数n,不等式
an+1
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)
-
an
n-2+an
≤0成立,求正数a的取值范围.(只理科答)
分析:(Ⅰ)将点An(an
an+1
)
代入抛物线y2=x+1,得an+1=an+1,由此能求出an;过点(0,1),以方向向量为(1,2)的直线方程为y=2x+1,把点Bn(n,bn)代入能求出bn
(Ⅱ)由f(n)=
an,(n为奇数)
bn,(n为偶数)
=
n+5,n为奇数
2n+1,n为偶数
,利用题设条件能推导出存在唯一的k=4符合条件.
(Ⅲ)由
an+1
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)
-
an
n-2
+an
≤0,知a≤
1
2n+3
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)
,设f(n+1)=
1
2n+5
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)(1+
1
bn+1
)
,利用构造法能求出正数a的取值范围.
解答:解:(Ⅰ)将点An(an
an+1
)
代入抛物线y2=x+1,
得an+1=an+1,
∴an+1-an=d=1,
∴an=a1+(n-1)•1=n+5,
∵过点(0,1),以方向向量为(1,2)的直线方程为y=2x+1,
点Bn(n,bn)在过点(0,1),以方向向量为(1,2)的直线上,
∴bn=2n+1.
(Ⅱ)由(Ⅰ)知f(n)=
an,(n为奇数)
bn,(n为偶数)
=
n+5,n为奇数
2n+1,n为偶数

当k为偶数时,k+27为奇数,
∴f(k+27)=4f(k),
∴k+27+5=4(2k+1),∴k=4.
当k为奇数时,k+27为偶数,
∴2(k+27)+1=4(k+5),∴k=
35
2
(舍去)
综上所述,存在唯一的k=4符合条件.
(Ⅲ)由
an+1
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)
-
an
n-2
+an
≤0,
即a≤
1
2n+3
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)

设f(n+1)=
1
2n+5
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)(1+
1
bn+1
)

f(n+1)
f(n)
=
2n+3
2n+5
•(1+
1
bn+1
)

=
2n+3
2n+5
2n+4
2n+3

=
2n+4
2n+5
2n+3

=
4n2+16n+16
4n2+16n+15
>1

∴f(n+1)>f(n),即f(n)递增,
∴f(n)min=f(1)=
1
5
4
3
=
4
5
15

∴0<a≤
4
5
15
.…(12分)
点评:本题考查数列的通项公式的求法,考查满足条件的实数的取值范围的求法,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网