题目内容
右图是一个容量为200的样本的频率分布直方图,请根据图形中的数据填空:
(1)样本数据落在范围的频率为
;
(2)样本数据落在范围的频数为
;
答案:0.32 72
解析:
解析:
解:(1) 样本数据落在范围
|
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201105/23/38663efc.png)
年龄分组 | A项培训成绩优秀人数 | B项培训成绩优秀人数 |
[20,30) | 30 | 18 |
[30,40) | 36 | 24 |
[40,50) | 12 | 9 |
[50,60] | 4 | 3 |
(2)随机从年龄段[20,30)和[30,40)中各抽取1人,设这两人中A、B两项培训结业考试成绩都优秀的人数为X,求X的分布列和数学期望.
《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100ml(不含80)之间,属于酒后驾车;在80mg/100ml(含80)以上时,属醉酒驾车,对于酒后驾车和醉酒驾车的驾驶员公安机关将给予不同程度的处罚.
据《法制晚报》报道,2010年8月1日至8月28日,某市交管部门共抽查了1000辆车,查出酒后驾车和醉酒驾车的驾驶员80人,右图是对这80人血液中酒精含量进行检测所得结果的频率分布直方图.
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201311/163/73b53441.png)
(Ⅰ)根据频率分布直方图完成下表:
(Ⅱ)根据上述数据,求此次抽查的1000人中属于醉酒驾车的概率;
(Ⅲ)若用分层抽样的方法从血液酒精浓度在[70,90)范围内的驾驶员中抽取一个容量为5的样本,并将该样本看成一个总体,从中任取2人,求恰有1人属于醉酒驾车的概率.
据《法制晚报》报道,2010年8月1日至8月28日,某市交管部门共抽查了1000辆车,查出酒后驾车和醉酒驾车的驾驶员80人,右图是对这80人血液中酒精含量进行检测所得结果的频率分布直方图.
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201311/163/73b53441.png)
(Ⅰ)根据频率分布直方图完成下表:
酒精含量 (单位:mg/100ml) |
[20,30) | [30,40) | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
人数 |
(Ⅲ)若用分层抽样的方法从血液酒精浓度在[70,90)范围内的驾驶员中抽取一个容量为5的样本,并将该样本看成一个总体,从中任取2人,求恰有1人属于醉酒驾车的概率.
《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100ml(不含80)之间,属于酒后驾车;在80mg/100ml(含80)以上时,属醉酒驾车,对于酒后驾车和醉酒驾车的驾驶员公安机关将给予不同程度的处罚.
据《法制晚报》报道,2010年8月1日至8月28日,某市交管部门共抽查了1000辆车,查出酒后驾车和醉酒驾车的驾驶员80人,右图是对这80人血液中酒精含量进行检测所得结果的频率分布直方图.
(Ⅰ)根据频率分布直方图完成下表:
酒精含量 (单位:mg/100ml) | [20,30) | [30,40) | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
人数 |
(Ⅲ)若用分层抽样的方法从血液酒精浓度在[70,90)范围内的驾驶员中抽取一个容量为5的样本,并将该样本看成一个总体,从中任取2人,求恰有1人属于醉酒驾车的概率.
《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100ml(不含80)之间,属于酒后驾车;在80mg/100ml(含80)以上时,属醉酒驾车,对于酒后驾车和醉酒驾车的驾驶员公安机关将给予不同程度的处罚.
据《法制晚报》报道,2010年8月1日至8月28日,某市交管部门共抽查了1000辆车,查出酒后驾车和醉酒驾车的驾驶员80人,右图是对这80人血液中酒精含量进行检测所得结果的频率分布直方图.
(Ⅰ)根据频率分布直方图完成下表:
(Ⅱ)根据上述数据,求此次抽查的1000人中属于醉酒驾车的概率;
(Ⅲ)若用分层抽样的方法从血液酒精浓度在[70,90)范围内的驾驶员中抽取一个容量为5的样本,并将该样本看成一个总体,从中任取2人,求恰有1人属于醉酒驾车的概率.
据《法制晚报》报道,2010年8月1日至8月28日,某市交管部门共抽查了1000辆车,查出酒后驾车和醉酒驾车的驾驶员80人,右图是对这80人血液中酒精含量进行检测所得结果的频率分布直方图.
(Ⅰ)根据频率分布直方图完成下表:
酒精含量 (单位:mg/100ml) | [20,30) | [30,40) | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
人数 |
(Ⅲ)若用分层抽样的方法从血液酒精浓度在[70,90)范围内的驾驶员中抽取一个容量为5的样本,并将该样本看成一个总体,从中任取2人,求恰有1人属于醉酒驾车的概率.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222400043259967/SYS201311012224000432599016_ST/images0.png)
某工厂有120名工人,其年龄都在20~60岁之间,各年龄段人数按[20,30),[30,40),[40,50),[50,60]分组,其频率分布直方图如右图所示,工厂为了开发新产品,引进了新的生产设备,要求每个工人都要参加A、B两项培训,培训结束后进行结业考试,已知各年龄段两项培训结业考试成绩优秀的人数如下表所示,假设两项培训是相互独立的,结业考试也互不影响.
(1)若用分层抽样法从全厂工人中抽取一个容量为40的样本,求各年龄段应分别抽取的人数,并估计全厂工人的平均年龄;
(2)随机从年龄段[20,30)和[30,40)中各抽取1人,设这两人中A、B两项培训结业考试成绩都优秀的人数为X,求X的分布列和数学期望.
年龄分组 | A项培训成绩优秀人数 | B项培训成绩优秀人数 |
[20,30) | 30 | 18 |
[30,40) | 36 | 24 |
[40,50) | 12 | 9 |
[50,60] | 4 | 3 |
(2)随机从年龄段[20,30)和[30,40)中各抽取1人,设这两人中A、B两项培训结业考试成绩都优秀的人数为X,求X的分布列和数学期望.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181915617382854/SYS201310241819156173828016_ST/images0.png)