题目内容

已知a≥0,函数f(x)=a2+
2
cos(x-
π
4
)+
1
2
sin2x
的最大值为
25
2
,则实数a的值是
12-2
2
12-2
2
分析:通过两角差的余弦函数以及二倍角公式,利用换元法通过配方法求出函数的最大值,然后求出a的值.
解答:解:y=f(x)=a2+
2
cos(x-
π
4
)+
1
2
sin2x

=a2+
2
cosxcos
π
4
+
2
sinxsin
π
4
+  sinxcosx

=a2+cosx+sinx+sinxcosx
令t=cosx+sinx=
2
cos(x+
π
4
)-
2
≤t≤
2

y=a2+t+
t2-1
2

=
1
2
(t+1)2-1+a2
t=
2
时ymax=
2
+
1
2
+a2=
25
2

a2=12-
2

∵a≥0 
∴a=
12-2
2

故答案为:
12-2
2
点评:本题考查三角函数的最大值的求法,二倍角公式的应用,换元法的应用,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网