题目内容

1.已知f(x)=lnx-ax2-bx.
(Ⅰ)若a=-1,函数f(x)在其定义域内是增函数,求b的取值范围;
(Ⅱ)设f(x)的零点为x1,x2且x1<x2,x1+x2=2x0,求证:f′(x0)<0.

分析 (Ⅰ)化简函数f(x)=lnx+x2-bx,从而可得f′(x)=$\frac{1}{x}$+2x-b≥0在(0,+∞)上恒成立,即b≤$\frac{1}{x}$+2x在(0,+∞)上恒成立,再由$\frac{1}{x}$+2x≥2$\sqrt{2}$(当且仅当x=$\frac{\sqrt{2}}{2}$时,等号成立),从而求b的取值范围.
(Ⅱ)由题意得,$\left\{\begin{array}{l}{f({x}_{1})=ln{x}_{1}-a{{x}_{1}}^{2}-b{x}_{1}=0}\\{f({x}_{2})=ln{x}_{2}-a{{x}_{2}}^{2}-b{x}_{2}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{ln{x}_{1}=a{{x}_{1}}^{2}+b{x}_{1}}\\{ln{x}_{2}=a{{x}_{2}}^{2}+b{x}_{2}}\end{array}\right.$,从而可得ln$\frac{{x}_{1}}{{x}_{2}}$=(x1-x2)[a(x1+x2)+b],再由f′(x)=$\frac{1}{x}$-2ax-b及x1+x2=2x0得到f′(x0)=$\frac{1}{{x}_{1}-{x}_{2}}$[$\frac{2(\frac{{x}_{1}}{{x}_{2}}-1)}{\frac{{x}_{1}}{{x}_{2}}+1}$-ln$\frac{{x}_{1}}{{x}_{2}}$],令t=$\frac{{x}_{1}}{{x}_{2}}$,m(t)=$\frac{2t-2}{t+1}$-lnt(0<t<1),从而求导可证明m(t)>m(1)=0;再由x1<x2证明f′(x0)<0.

解答 解:(Ⅰ)若a=-1,则函数f(x)=lnx+x2-bx,
∵函数f(x)在其定义域(0,+∞)上是增函数,
∴f′(x)=$\frac{1}{x}$+2x-b≥0在(0,+∞)上恒成立,
即b≤$\frac{1}{x}$+2x在(0,+∞)上恒成立,
而$\frac{1}{x}$+2x≥2$\sqrt{2}$(当且仅当x=$\frac{\sqrt{2}}{2}$时,等号成立)
故b≤2$\sqrt{2}$,
故b的取值范围为(-∞,2$\sqrt{2}$].
(Ⅱ)证明:由题意得,$\left\{\begin{array}{l}{f({x}_{1})=ln{x}_{1}-a{{x}_{1}}^{2}-b{x}_{1}=0}\\{f({x}_{2})=ln{x}_{2}-a{{x}_{2}}^{2}-b{x}_{2}=0}\end{array}\right.$,
即$\left\{\begin{array}{l}{ln{x}_{1}=a{{x}_{1}}^{2}+b{x}_{1}}\\{ln{x}_{2}=a{{x}_{2}}^{2}+b{x}_{2}}\end{array}\right.$,
故ln$\frac{{x}_{1}}{{x}_{2}}$=(x1-x2)[a(x1+x2)+b],
由f′(x)=$\frac{1}{x}$-2ax-b及x1+x2=2x0,得
f′(x0)=$\frac{1}{{x}_{0}}$-2ax0-b
=$\frac{2}{{x}_{1}+{x}_{2}}$-[a(x1+x2)+b]
=$\frac{2}{{x}_{1}+{x}_{2}}$-$\frac{1}{{x}_{1}-{x}_{2}}$ln$\frac{{x}_{1}}{{x}_{2}}$
=$\frac{1}{{x}_{1}-{x}_{2}}$[$\frac{2(\frac{{x}_{1}}{{x}_{2}}-1)}{\frac{{x}_{1}}{{x}_{2}}+1}$-ln$\frac{{x}_{1}}{{x}_{2}}$],
令t=$\frac{{x}_{1}}{{x}_{2}}$,m(t)=$\frac{2t-2}{t+1}$-lnt(0<t<1),
∵m′(t)=-$\frac{(t-1)^{2}}{t(t+1)^{2}}$<0,
∴m(t)在(0,1)上递减,
∴m(t)>m(1)=0;
又∵x1<x2
∴f′(x0)<0.

点评 本题考查了导数的综合应用及整体代换的思想应用,化简运算困难,要细心,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网