题目内容
在数列
中,已知
.
(Ⅰ)求数列
的通项公式;
(Ⅱ)求证:数列
是等差数列;
(Ⅲ)设数列
满足
,求
的前n项和
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015424194477.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240154242091690.png)
(Ⅰ)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015424194477.png)
(Ⅱ)求证:数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015424256487.png)
(Ⅲ)设数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015424475444.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015424677542.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015424475444.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015424709388.png)
(1)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015424724834.png)
(2)根据等差数列的定义,证明相邻两项的差为定值来得到证明。
(3)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240154247551237.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015424724834.png)
(2)根据等差数列的定义,证明相邻两项的差为定值来得到证明。
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240154247551237.png)
试题分析:解:(Ⅰ)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015424771561.png)
∴数列{
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015424787337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015424818272.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015424818272.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015424724834.png)
(Ⅱ)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015424865751.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240154248801025.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015424896357.png)
∴数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015424927439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015424896357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015424958365.png)
(Ⅲ)由(Ⅰ)知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015424974565.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015424989541.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015425021404.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240154250361040.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240154250521853.png)
于是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240154250831977.png)
10分
两式①-②相减得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240154250991506.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015425114844.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240154247551237.png)
点评:主要是考查了等差数列和等比数列的通项公式以及前n项和的运用,属于中档题。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目