题目内容
某港口海水的深度y(米)是时间t(时)(0≤t≤24)的函数,记为:, 已知某日海水深度的数据如下: | ||||||||||||||||||||
(1)试根据以上数据,求出函数的振幅A、最小正周期T和表达式; (2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的(船舶停靠时,船底只需不碰海底即可)。某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需时间)? |
解:(1)依题意有:最小正周期为:T=12,振幅A=3,b=10,,
∴。
(2)该船安全进出港,需满足:y≥6.5+5,
即:,
∴,
∴,
∴,
又,
∴或,
依题意:该船至多能在港内停留:17-1=16(小时)。
∴。
(2)该船安全进出港,需满足:y≥6.5+5,
即:,
∴,
∴,
∴,
又,
∴或,
依题意:该船至多能在港内停留:17-1=16(小时)。
练习册系列答案
相关题目
某港口海水的深度y(米)是时间t(时)(0≤t≤24)的函数,记为:y=f(t).
已知某日海水深度的数据如下:
经长期观察,y=f(t)的曲线可近似地看成函数y=Asinωt+b的图象.
(1)试根据以上数据,求出函数y=f(t)=Asinωt+b的振幅、最小正周期和表达式;
(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的(船舶停靠时,船底只需不碰海底即可).某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需时间)?
已知某日海水深度的数据如下:
t(时) | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | |
y(米) | 10.0 | 13.0 | 9.9 | 7.0 | 10.0 | 13.0 | 10.1 | 7.0 | 10.0 |
(1)试根据以上数据,求出函数y=f(t)=Asinωt+b的振幅、最小正周期和表达式;
(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的(船舶停靠时,船底只需不碰海底即可).某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需时间)?
某港口海水的深度y(米)是时间t(时)(0≤t≤24)的函数,记为:y=f(t).
已知某日海水深度的数据如下:
经长期观察,y=f(t)的曲线可近似地看成函数y=Asinωt+b的图象.
(1)试根据以上数据,求出函数y=f(t)=Asinωt+b的振幅、最小正周期和表达式;
(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的(船舶停靠时,船底只需不碰海底即可).某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需时间)?
已知某日海水深度的数据如下:
t(时) | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | |
y(米) | 10.0 | 13.0 | 9.9 | 7.0 | 10.0 | 13.0 | 10.1 | 7.0 | 10.0 |
(1)试根据以上数据,求出函数y=f(t)=Asinωt+b的振幅、最小正周期和表达式;
(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的(船舶停靠时,船底只需不碰海底即可).某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需时间)?