ÌâÄ¿ÄÚÈÝ
£¨06ÄêÉϺ£¾íÀí£©£¨18·Ö£©
ÒÑÖªº¯Êý£½£«ÓÐÈçÏÂÐÔÖÊ£ºÈç¹û³£Êý£¾0£¬ÄÇô¸Ãº¯ÊýÔÚ0£¬ÉÏÊǼõº¯Êý£¬ÔÚ£¬£«¡ÞÉÏÊÇÔöº¯Êý£®
£¨1£©Èç¹ûº¯Êý£½£«£¨£¾0£©µÄÖµÓòΪ6£¬£«¡Þ£¬ÇóµÄÖµ£»
£¨2£©Ñо¿º¯Êý£½£«£¨³£Êý£¾0£©ÔÚ¶¨ÒåÓòÄڵĵ¥µ÷ÐÔ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©¶Ôº¯Êý£½£«ºÍ£½£«£¨³£Êý£¾0£©×÷³öÍƹ㣬ʹËüÃǶ¼ÊÇÄãËùÍƹãµÄº¯ÊýµÄÌØÀý£®Ñо¿ÍƹãºóµÄº¯ÊýµÄµ¥µ÷ÐÔ£¨Ö»Ðëд³ö½áÂÛ£¬²»±ØÖ¤Ã÷£©£¬²¢Çóº¯Êý£½£«£¨ÊÇÕýÕûÊý£©ÔÚÇø¼ä[£¬2]ÉϵÄ×î´óÖµºÍ×îСֵ£¨¿ÉÀûÓÃÄãµÄÑо¿½áÂÛ£©£®
½âÎö£º£¨1£©º¯Êýy=x+(x>0)µÄ×îСֵÊÇ2£¬Ôò2=6, ¡àb=log29.
(2) Éè0
µ±
µ±0
ÓÖy=ÊÇżº¯Êý£¬ÓÚÊÇ£¬
¸Ãº¯ÊýÔÚ(£¡Þ,£]ÉÏÊǼõº¯Êý, ÔÚ[£,0)ÉÏÊÇÔöº¯Êý£»
(3) ¿ÉÒ԰Ѻ¯ÊýÍƹãΪy=(³£Êýa>0),ÆäÖÐnÊÇÕýÕûÊý.
µ±nÊÇÆæÊýʱ,º¯Êýy=ÔÚ(0,]ÉÏÊǼõº¯Êý,ÔÚ[,+¡Þ) ÉÏÊÇÔöº¯Êý,
ÔÚ(£¡Þ,£]ÉÏÊÇÔöº¯Êý, ÔÚ[£,0)ÉÏÊǼõº¯Êý£»
µ±nÊÇżÊýʱ,º¯Êýy=ÔÚ(0,]ÉÏÊǼõº¯Êý,ÔÚ[,+¡Þ) ÉÏÊÇÔöº¯Êý,
ÔÚ(£¡Þ,£]ÉÏÊǼõº¯Êý, ÔÚ[£,0)ÉÏÊÇÔöº¯Êý£»
F(x)=+
=
Òò´ËF(x) ÔÚ [,1]ÉÏÊǼõº¯Êý,ÔÚ[1,2]ÉÏÊÇÔöº¯Êý.
ËùÒÔ£¬µ±x=»òx=2ʱ£¬F(x)È¡µÃ×î´óÖµ()n+()n£»
µ±x=1ʱF(x)È¡µÃ×îСֵ2n+1£»