题目内容
经测试,光线每通过一块特殊的玻璃板,其强度将损失10%,已知原来的光线强度为a,设通过x块这样的玻璃板后的光线强度为y,通过块玻璃板后,光线强度削弱到原来的30%以下( )
A、8 | B、10 | C、11 | D、12 |
分析:由题意知,通过一块这样的玻璃,光线强度将变为,通过x块玻璃后,光线强度y=(
)x a,令y≤30%a,解得x的值.
9 |
10 |
解答:解:通过一块玻璃,光线强度变为,通过x块玻璃后,光线强度y=(
)xa,
令y≤30%a,即(
)xa≤
,xlg
≤lg
,x≥
=
≈11.4,
所以x=12,
故选D.
9 |
10 |
令y≤30%a,即(
9 |
10 |
3a |
10 |
9 |
10 |
3 |
10 |
lg
| ||
lg
|
lg3-1 |
lg9-1 |
所以x=12,
故选D.
点评:本题主要是考查等比数列在实际问题中应用,利用等比数列的通项公式,解对数不等式可得x的值
练习册系列答案
相关题目