题目内容
已知![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_ST/0.png)
(1)求f(x)的最小正周期;
(2)求f(x)的单调减区间;
(3)若函数g(x)=f(x)-m在区间
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_ST/1.png)
【答案】分析:(1)函数解析式利用两角和与差的正弦函数公式及特殊角的三角函数值化简,整理后利用两角和与差得正弦函数公式化为一个角的正弦函数,找出ω的值即可求出函数的最小正周期;
(2)根据正弦函数的单调减区间为[
+2kπ,
+2kπ],k∈Z,求出x的范围即可;
(3)作出函数y=f(x)在[-
,
]上的图象,函数g(x)无零点,即方程f(x)-m=0无解,亦即:函数y=f(x)与y=m在x∈[-
,
]上无交点从图象可看出f(x)在[-
,
]上的值域为[0,
+1],利用图象即可求出m的范围.
解答:解:(1)f(x)=
sin2x+
cos2x+
sin2x-
cos2x=sin2x+cos2x+1=
sin(2x+
)+1,
∵ω=2,∴T=π;
(2)由
+2kπ≤2x+
≤
+2kπ,k∈Z得:
+kπ≤x≤
+kπ,k∈Z,
∴f(x)的单调减区间为[kπ+
,kπ+
],k∈Z;
(3)作出函数y=f(x)在[-
,
]上的图象如下:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/images24.png)
函数g(x)无零点,即方程f(x)-m=0无解,
亦即:函数y=f(x)与y=m在x∈[-
,
]上无交点从图象可看出f(x)在[-
,
]上的值域为[0,
+1],
则m>
+1或m<0.
点评:此题考查了两角和与差的正弦函数公式,正弦函数的单调性,以及正弦函数的图象与性质,熟练掌握公式是解本题的关键.
(2)根据正弦函数的单调减区间为[
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/1.png)
(3)作出函数y=f(x)在[-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/8.png)
解答:解:(1)f(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/14.png)
∵ω=2,∴T=π;
(2)由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/19.png)
∴f(x)的单调减区间为[kπ+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/21.png)
(3)作出函数y=f(x)在[-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/images24.png)
函数g(x)无零点,即方程f(x)-m=0无解,
亦即:函数y=f(x)与y=m在x∈[-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/28.png)
则m>
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172926957539016/SYS201311031729269575390019_DA/29.png)
点评:此题考查了两角和与差的正弦函数公式,正弦函数的单调性,以及正弦函数的图象与性质,熟练掌握公式是解本题的关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目