题目内容
(07年广东卷) (l4分)已知是实数,函数.如果函数在区间上有零点.求的取值范围.
解析1:当a=0时,函数为f (x)=2x -3,其零点x=不在区间[-1,1]上。
当a≠0时,函数f (x) 在区间[-1,1]分为两种情况:
①函数在区间[─1,1]上只有一个零点,此时
或
解得1≤a≤5或a=
②函数在区间[─1,1]上有两个零点,此时
或
解得a5或a<
综上所述,如果函数在区间[─1,1]上有零点,那么实数a的取值范围为
(-∞, ]∪[1, +∞).
解析2:a=0时,不符合题意,所以a≠0,又
∴=0在[-1,1]上有解,在[-1,1]上有解在[-1,1]上有解,问题转化为求函数[-1,1]上的值域;设t=3-2x,x∈[-1,1],则,t∈[1,5],,
设,时,,此函数g(t)单调递减,时,>0,此函数g(t)单调递增,∴y的取值范围是,∴=0在[-1,1]上有解ó∈或。
练习册系列答案
相关题目