题目内容
证明下列三角恒等式:
(1)
=tan2θ;
(2)
=
.
(1)
1-cos2θ |
1+cos2θ |
(2)
1-2sinθcosθ |
cos2θ-sin2θ |
1-tanθ |
1+tanθ |
证明:(1)等式的左边=
=
=
=tan2θ=右边,故等式成立.
(2)等式的左边=
=
=
=
=右边,故等式成立.
1-cos2θ |
1+cos2θ |
1-(1-2sin2θ) |
1+(2cos2θ-1) |
2sin2θ |
2cos2θ |
(2)等式的左边=
1-2sinθcosθ |
cos2θ-sin2θ |
(cosθ-sinθ)2 |
(cosθ+sinθ)(cosθ-sinθ) |
cosθ-sinθ |
cosθ+sinθ |
1-tanθ |
1+tanθ |
=右边,故等式成立.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目