题目内容
设{an}是正数组成的数列,前n项和为Sn且an=22Sn |
(Ⅰ)写出数列{an}的前三项;
(Ⅱ)求数列{an}的通项公式,并写出推证过程;
(Ⅲ)令bn=
4 |
an•an+1 |
分析:(I)把n=1,2,3分别代入递推公式中可求
(II)由已知可得8Sn=an2+4an+4,8Sn+1=an+12+4an+1+4,两式相减结合an+1+an>0可得an+1-an=4,利用等差数列的通项公式可求
( III)由(II)可得bn=
=
=
=
(
-
),利用裂项求和
(II)由已知可得8Sn=an2+4an+4,8Sn+1=an+12+4an+1+4,两式相减结合an+1+an>0可得an+1-an=4,利用等差数列的通项公式可求
( III)由(II)可得bn=
4 |
an•an+1 |
4 |
(4n-2)(4n+2) |
1 |
(2n-1)(2n+1) |
1 |
2 |
1 |
2n-1 |
1 |
2n+1 |
解答:解:(Ⅰ)∵an=2
-2
n=1时可得,a1=2
-2∴a1=2
把n=2代入可得a2=6,n=3代入可得a3=10;
(Ⅱ)8Sn=an2+4an+4…(1)
8Sn+1=an+12+4an+1+4…(2)
(2)-(1)得8an+1=an+12-an2+4an+1-4an
(an+1+an)(an+1-an-4)=0
∵an+1+an>0
∴an+1-an-4=0
an+1-an=4
∴{an}是以2为首项,4为公差的等差数列.an=a1+(n-1)d=4n-2
( III)bn=
=
=
=
(
-
)
∴Tn=b1+b2+…+bn
=
(1-
+
-
+…+
-
)
=
(1-
)=
.
2Sn |
n=1时可得,a1=2
2s1 |
把n=2代入可得a2=6,n=3代入可得a3=10;
(Ⅱ)8Sn=an2+4an+4…(1)
8Sn+1=an+12+4an+1+4…(2)
(2)-(1)得8an+1=an+12-an2+4an+1-4an
(an+1+an)(an+1-an-4)=0
∵an+1+an>0
∴an+1-an-4=0
an+1-an=4
∴{an}是以2为首项,4为公差的等差数列.an=a1+(n-1)d=4n-2
( III)bn=
4 |
an•an+1 |
4 |
(4n-2)(4n+2) |
1 |
(2n-1)(2n+1) |
1 |
2 |
1 |
2n-1 |
1 |
2n+1 |
∴Tn=b1+b2+…+bn
=
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
2n-1 |
1 |
2n+1 |
=
1 |
2 |
1 |
2n+1 |
n |
2n+1 |
点评:本题主要考查了利用递推公式求解数列中的项及构造求解数列的通项公式,要注意裂项求和在解决本题中的应用时,裂项时容易漏
.
1 |
2 |
练习册系列答案
相关题目