题目内容

8、如图,用A,B,C三个不同的元件连接成一个系统N.当元件A正常工作且元件B、C至少有一个正常工作时,系统N正常工作.已知元件A,B,C正常工作的概率依次为0.8,0.85,0.9,则系统N能正常工作的概率等于
0.788

分析:由题意用A,B,C三个不同的元件连接成一个系统N.当元件A正常工作且元件B、C至少有一个正常工作时,系统N正常工作.先算出B,C至少有一个通的概率,再利用乘法原理求值
解答:解:B、C都不工作的概率为(1-0.85)(1-0.9)=0.015
故B、C至少有一个正常工作的概率是0.985
又元件A正常工作的概率依次为0.8
故系统N能正常工作的概率等于0.8×0.985=0.788
故答案为0.788
点评:本题考查相互独立事件的概率乘法公式,解题的关键是求出B,C所组成的系统能正确常工作的概率,理解并掌握乘法原理是解答本题的知识保证.本题属于概率的应用题,是近几年高考概率的考试方向.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网