题目内容
求和:Sn=(x+1 |
x |
1 |
x2 |
1 |
xn |
分析:先讨论当x=±1时,通项为常数,求出其前n项的和;再求当x≠±1时,将数列的通项展开,判断出其是有三个特殊数列的和构成,两个等比数列一个等差数列;利用分组求和的方法,求出前n项和
解答:解:当x=±1时,
∵(xn+
)2=4,∴Sn=4n,
当x≠±1时,
∵an=x2n+2+
,
∴Sn=(x2+x4++x2n)+2n+(
+
++
)=
+
+2n
=
+2n,
所以当x=±1时,Sn=4n;
当x≠±1时,Sn=
+2n.
∵(xn+
1 |
xn |
当x≠±1时,
∵an=x2n+2+
1 |
x2n |
∴Sn=(x2+x4++x2n)+2n+(
1 |
x2 |
1 |
x4 |
1 |
x2n |
x2(x2n-1) |
x2-1 |
x-2(1-x-2n) |
1-x-2 |
=
(x2n-1)(x2n+2+1) |
x2n(x2-1) |
所以当x=±1时,Sn=4n;
当x≠±1时,Sn=
(x2n-1)(x2n+2+1) |
x2n(x2-1) |
点评:求数列的前n项和,关键是判断出数列通项的特点,然后选择合适的求和方法.

练习册系列答案
相关题目