题目内容

设单调递增函数f(x)的定义域为(0,+∞),且对任意的正实数x,y有f(xy)=f(x)+f(y),且f(
1
2
)=-1

(1)一个各项均为正数的数列{an}满足:f(sn)=f(an)+f(an+1)-1其中Sn为数列{an}的前n项和,求数列{an}的通项公式;
(2)在(1)的条件下,是否存在正数M使下列不等式:2n•a1a2…an≥M
2n+1
(2a1-1)(2a2-1)…(2an-1)
对一切n∈N*成立?若存在,求出M的取值范围;若不存在,请说明理由.
分析:(1由题设知f(Sn)=f[(an2+an
1
2
]
Sn=
1
2
(an2+an)
.由此能求出数列{an}的通项公式;
(2)、假设M≤
2na1a2an
2n+1
(2a1-1)(2a2-1)(2a n-1)
对一切n∈N*恒成立.令g(n)=
2na1a2an
2n+1
(2a1-1)(2a2-1)(2an-1)
g(n+1)=
2n+1×1×2××n×(n+1)
2n+3
×1×3××(2n-1)(2n+1)
.故
g(n+1)
g(n)
=
2n+2
2n+1
2n+3
=
4n2+8n+4
4n2+8n+3
>1
,由此能导出n∈N*,g(n)≥g(1)=
2
3
3
0<M≤
2
3
3
解答:解:(1)∵对任意的正数x、y均有f(xy)=f(x)+f(y)且f(
1
2
)=-1
.(2分)
又∵an>0且f(Sn)=f(an)+f(an+1)-1=f(an)+f(an+1)+f(
1
2
)

f(Sn)=f[(an2+an
1
2
]
.(4分)
又∵f(x)是定义在(0,+∞]上的单增函数,
∴Sn=
1
2
(an2+an)

当n=1时,a1=
1
2
(a12+a1)

∴a12-a1=0∵a1>0,
∴a1=1.
当n≥2时,∵2an=2Sn-2Sn-1=an2+an-an-12-an-1
∴(an+an-1)(an-an-1-1)=0.
∵an>0∴an-an-1=1(n≥2),
∴{an}为等差数列,a1=1,d=1
∴an=n.(6分)

(2)、假设M存在满足条件,即M≤
2na1a2an
2n+1
(2a1-1)(2a2-1)(2a n-1)
对一切n∈N*恒成立.(8分)
令g(n)=
2na1a2an
2n+1
(2a1-1)(2a2-1)(2an-1)

∴g(n+1)=
2n+1×1×2××n×(n+1)
2n+3
×1×3××(2n-1)(2n+1)
.(10分)
g(n+1)
g(n)
=
2n+2
2n+1
2n+3
=
4n2+8n+4
4n2+8n+3
>1,
∴g(n+1)>g(n),
∴g(n)单调递增,(12分)
∴n∈N*,g(n)≥g(1)=
2
3
3
,0<M≤
2
3
3
.(14分)
点评:本题考查数列的性质和应用,解题时要认真审题,注意公式的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网