题目内容
为了求1+2+22+23+…+22008的值,可令S=1=2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1仿照以上推理计算出1+5+52+53+…+52009的值是( )
A、52009-1 | ||
B、52010-1 | ||
C、52009-1 | ||
D、
|
分析:仔细阅读题目中示例,找出其中规律,利用错位相减法求解本题.
解答:解:根据题中的规律,设S=1+5+52+53+…+52009,
则5S=5+52+53+…+52009+52010,
所以5S-S=4S=52010-1,
所以S=
.
故选D.
则5S=5+52+53+…+52009+52010,
所以5S-S=4S=52010-1,
所以S=
52010-1 |
4 |
故选D.
点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.

练习册系列答案
相关题目