题目内容
(2013•陕西)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1=
.
(Ⅰ) 证明:A1C⊥平面BB1D1D;
(Ⅱ) 求平面OCB1与平面BB1D1D的夹角θ的大小.
2 |
(Ⅰ) 证明:A1C⊥平面BB1D1D;
(Ⅱ) 求平面OCB1与平面BB1D1D的夹角θ的大小.
分析:(Ⅰ)要证明A1C⊥平面BB1D1D,只要证明A1C垂直于平面BB1D1D内的两条相交直线即可,由已知可证出A1C⊥BD,取B1D1的中点为E1,通过证明四边形A1OCE1为正方形可证A1C⊥E1O.由线面垂直的判定定理问题得证.
(Ⅱ)以O为原点,分别以OB,OC,OA1所在直线为x,y,Z轴建立空间直角坐标系,然后求出平面OCB1与平面BB1D1D的法向量,利用法向量所成的角求平面OCB1与平面BB1D1D的夹角θ的大小.
(Ⅱ)以O为原点,分别以OB,OC,OA1所在直线为x,y,Z轴建立空间直角坐标系,然后求出平面OCB1与平面BB1D1D的法向量,利用法向量所成的角求平面OCB1与平面BB1D1D的夹角θ的大小.
解答:(Ⅰ)证明:∵A1O⊥面ABCD,且BD?面ABCD,∴A1O⊥BD;
又∵在正方形ABCD中,AC⊥BD,A1O∩AC=O,
∴BD⊥面A1AC,且A1C?面A1AC,故A1C⊥BD.
在正方形ABCD中,∵AB=
,∴AO=1,
在Rt△A1OA中,∵AA1=
,∴A1O=1.
设B1D1的中点为E1,则四边形A1OCE1为正方形,∴A1C⊥E1O.
又BD?面BB1D1D,且E10?面BB1D1D,且BD∩EO=O,
∴A1C⊥面BB1D1D;
(Ⅱ)解:以O为原点,分别以OB,OC,OA1所在直线为x,y,Z轴建立如图所示空间直角坐标系,
则B(1,0,0),C(0,1,0),A1(0,0,1),B1(1,1,1),
=(0,1,-1).
由(Ⅰ)知,平面BB1D1D的一个法向量
=
=(0,1,-1),
=(1,1,1),
=(0,1,0).
设平面OCB1的法向量为
=(x,y,z),
由
,得
,取z=-1,得x=1.
∴
=(1,0,-1).
则cosθ=|cos<
,
>|=
=
=
.
所以,平面OCB1与平面BB1D1D的夹角θ为
.
又∵在正方形ABCD中,AC⊥BD,A1O∩AC=O,
∴BD⊥面A1AC,且A1C?面A1AC,故A1C⊥BD.
在正方形ABCD中,∵AB=
2 |
在Rt△A1OA中,∵AA1=
2 |
设B1D1的中点为E1,则四边形A1OCE1为正方形,∴A1C⊥E1O.
又BD?面BB1D1D,且E10?面BB1D1D,且BD∩EO=O,
∴A1C⊥面BB1D1D;
(Ⅱ)解:以O为原点,分别以OB,OC,OA1所在直线为x,y,Z轴建立如图所示空间直角坐标系,
则B(1,0,0),C(0,1,0),A1(0,0,1),B1(1,1,1),
A1C |
由(Ⅰ)知,平面BB1D1D的一个法向量
n1 |
A1C |
OB1 |
OC |
设平面OCB1的法向量为
n2 |
由
|
|
∴
n2 |
则cosθ=|cos<
n1 |
n2 |
|
| ||||
|
|
1 | ||||
|
1 |
2 |
所以,平面OCB1与平面BB1D1D的夹角θ为
π |
3 |
点评:本题考查了直线与平面垂直的判定,考查了二面角的平面角的求法考查了利用向量求二面角的平面角,解答的关键是建立正确的空间右手系,是中档题.
练习册系列答案
相关题目