题目内容
当![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123914341431997/SYS201310251239143414319002_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123914341431997/SYS201310251239143414319002_ST/1.png)
A.奇函数且图象关于点
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123914341431997/SYS201310251239143414319002_ST/2.png)
B.偶函数且图象关于点(π,0)对称
C.奇函数且图象关于直线
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123914341431997/SYS201310251239143414319002_ST/3.png)
D.偶函数且图象关于点
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123914341431997/SYS201310251239143414319002_ST/4.png)
【答案】分析:由f(
)=sin(
+φ)=-1可求得φ=2kπ-
(k∈Z),从而可求得y=f(
-x)的解析式,利用正弦函数的奇偶性与对称性判断即可.
解答:解:∵f(
)=sin(
+φ)=-1,
∴
+φ=2kπ-
,
∴φ=2kπ-
(k∈Z),
∴y=f(
-x)=Asin(
-x+2kπ-
)=-Asinx,
令y=g(x)=-Asinx,则g(-x)=-Asin(-x)=Asinx=-g(x),
∴y=g(x)是奇函数,可排除B,D;
其对称轴为x=kπ+
,k∈Z,对称中心为(kπ,0)k∈Z,可排除A;
令k=0,x=
为一条对称轴,
故选C.
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,求φ是难点,考查正弦函数的奇偶性与对称性,属于中档题.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123914341431997/SYS201310251239143414319002_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123914341431997/SYS201310251239143414319002_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123914341431997/SYS201310251239143414319002_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123914341431997/SYS201310251239143414319002_DA/3.png)
解答:解:∵f(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123914341431997/SYS201310251239143414319002_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123914341431997/SYS201310251239143414319002_DA/5.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123914341431997/SYS201310251239143414319002_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123914341431997/SYS201310251239143414319002_DA/7.png)
∴φ=2kπ-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123914341431997/SYS201310251239143414319002_DA/8.png)
∴y=f(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123914341431997/SYS201310251239143414319002_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123914341431997/SYS201310251239143414319002_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123914341431997/SYS201310251239143414319002_DA/11.png)
令y=g(x)=-Asinx,则g(-x)=-Asin(-x)=Asinx=-g(x),
∴y=g(x)是奇函数,可排除B,D;
其对称轴为x=kπ+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123914341431997/SYS201310251239143414319002_DA/12.png)
令k=0,x=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123914341431997/SYS201310251239143414319002_DA/13.png)
故选C.
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,求φ是难点,考查正弦函数的奇偶性与对称性,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目