题目内容
P为△ABC所在平面外一点,且PA、PB、PC两两垂直,则下列命题:
①PA⊥BC;
②PB⊥AC;
③PC⊥AB;
④AB⊥BC.
其中正确的个数是 .
①PA⊥BC;
②PB⊥AC;
③PC⊥AB;
④AB⊥BC.
其中正确的个数是
分析:对于①②③可根据直线与平面垂直的判定定理进行证明,对于④利用反例进行证明,例如正方体的一个角,AB就不垂直于BC.从而得到结论.
解答:解:如图所示,∵PA⊥PC、PA⊥PB,PC∩PB=P,
根据直线与平面垂直的判定定理,
∴PA⊥平面PBC,
又∵BC?平面PBC,∴PA⊥BC.
同理PB⊥AC、PC⊥AB,
但AB不一定垂直于BC,如正方体的一个角,其中∠ABC=60°.如图.
故答案为:3.
根据直线与平面垂直的判定定理,
∴PA⊥平面PBC,
又∵BC?平面PBC,∴PA⊥BC.
同理PB⊥AC、PC⊥AB,
但AB不一定垂直于BC,如正方体的一个角,其中∠ABC=60°.如图.
故答案为:3.
点评:本题主要考查了直线与平面垂直的判定,以及直线与平面垂直的性质,考查化归与转化的数学思想方法,以及空间想象能力、推理论证能力,属于基础题.
练习册系列答案
相关题目