题目内容

精英家教网如图所示,流程图给出了无穷整数数列{an}满足的条件,a1∈N+,且当k=5时,输出的S=-
5
9
;当k=10时,输出的S=-
10
99

(1)试求数列{an}的通项公式an
(2)是否存在最小的正数M使得Tn≤M对一切正整数n都成立,若存在,求出M的值;若不存在,请说明理由.
分析:(1)由题意可得
1
a1a2
+
1
a2a3
+…+
1
a5a6
=-
5
9
1
a1a2
+
1
a2a3
+…+
1
a10a11
=-
10
99
,从而可得
a1a6=-9
a1a11=-99
两式相减得:a1(a11-a6)=-90,即a1d=-18又∵a1d=a6所以可求数列通项;
(2)由题意可得Tn=14+
2n-7
2n-1
,进一步有当n≥5时,Tn+1-Tn<0;当n≤4时,Tn+1-Tn>0,从而当n=5时,Tn有最大值,进而将问题转化为利用最值解决恒成立问题.
解答:解:(1)由题设知
1
a1a2
+
1
a2a3
+…+
1
a5a6
=-
5
9
1
a1a2
+
1
a2a3
+…+
1
a10a11
=-
10
99

又∵{an}是等差数列,设公差为d,
1
d
(
1
a1
-
1
a6
)=-
5
9
1
d
(
1
a1
-
1
a11
)=-
10
99
.
a1a6=-9
a1a11=-99.

两式相减得:a1(a11-a6)=-90,即a1d=-18
又∵a1d=a1(a1+5d)=a12-90,∴a12=81,
∴a1=9,a1=-9舍,∴d=-2,∴an=11-2n
(2)Tn=
9
20
+
7
21
+
5
22
+…+
11-2n
2n-1
.①
①式两边同乘
1
2
1
2
Tn=
9
21
+
7
22
+…+
13-2n
2n-1
+
11-2n
2n
.②
②-①得(1-
1
2
)Tn=
9
20
+
-2
21
+
-2
22
…+
-2
2n-1
-
11-2n
2n

1
2
Tn=9-2(
1
2
+
1
22
+…+
1
2n-1
)-
11-2n
2n
=9-2(1-
1
2n-1
)-
11-2n
2n

Tn=14+
2n-7
2n-1

又∵Tn+1-Tn=
2n-5
2n
-
2n-7
2n-1
=
9-2n
2n

当n≥5时,∵Tn+1-Tn<0;当n≤4时,
∵Tn+1-Tn>0∴当n=5时,Tn有最大值
227
16

∵Tn≤M恒成立,∴M≥
227
16

∴M的最小值为
227
16
点评:本题考查数列、算法与函数的综合问题,本题解题的关键利用错位相减法求数列的和,再用函数的思想来解题,本题是一个综合题目,难度可以作为高考卷的压轴题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网