ÌâÄ¿ÄÚÈÝ
¶¨Ò壺Èôº¯Êýy=f£¨x£©ÔÚijһÇø¼äDÉÏÈÎÈ¡Á½¸öʵÊýx1¡¢x2£¬ÇÒx1¡Ùx2£¬¶¼ÓÐ
£¾f(
)£¬Ôò³Æº¯Êýy=f£¨x£©ÔÚÇø¼äDÉϾßÓÐÐÔÖÊL£®
£¨1£©Ð´³öÒ»¸öÔÚÆ䶨ÒåÓòÉϾßÓÐÐÔÖÊLµÄ¶ÔÊýº¯Êý£¨²»ÒªÇóÖ¤Ã÷£©£®
£¨2£©¶ÔÓÚº¯Êýf(x)=x+
£¬ÅжÏÆäÔÚÇø¼ä£¨0£¬+¡Þ£©ÉÏÊÇ·ñ¾ßÓÐÐÔÖÊL£¿²¢ÓÃËù¸ø¶¨ÒåÖ¤Ã÷ÄãµÄ½áÂÛ£®
£¨3£©Èôº¯Êýf(x)=
-ax2ÔÚÇø¼ä£¨0£¬1£©ÉϾßÓÐÐÔÖÊL£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®
f(x1)+f(x2) |
2 |
x1+x2 |
2 |
£¨1£©Ð´³öÒ»¸öÔÚÆ䶨ÒåÓòÉϾßÓÐÐÔÖÊLµÄ¶ÔÊýº¯Êý£¨²»ÒªÇóÖ¤Ã÷£©£®
£¨2£©¶ÔÓÚº¯Êýf(x)=x+
1 |
x |
£¨3£©Èôº¯Êýf(x)=
1 |
x |
·ÖÎö£º£¨1£©Ð´³öµÄº¯ÊýÊÇÏ°¼µÄº¯Êý¼´¿É£»
£¨2£©º¯Êýf(x)=x+
ÔÚÇø¼ä£¨0£¬+¡Þ£©ÉϾßÓÐÐÔÖÊL£®¸ù¾Ý¶¨Ò壬ÈÎÈ¡x1¡¢x2¡Ê£¨0£¬+¡Þ£©£¬ÇÒx1¡Ùx2
Ö»ÐèÒªÖ¤Ã÷
-f(
)£¾0¼´¿É£»
£¨3£©ÈÎÈ¡x1¡¢x2¡Ê£¨0£¬1£©£¬ÇÒx1¡Ùx2Ôò
-f(
)£¾0£¬Ö»ÐèÒª2-a•x1•x2£¨x1+x2£©£¾0ÔÚx1¡¢x2¡Ê£¨0£¬1£©ÉϺã³ÉÁ¢£¬¼´a£¼
£¬¹Ê¿ÉÇóʵÊýaµÄÈ¡Öµ·¶Î§£®
£¨2£©º¯Êýf(x)=x+
1 |
x |
Ö»ÐèÒªÖ¤Ã÷
f(x1)+f(x2) |
2 |
x1+x2 |
2 |
£¨3£©ÈÎÈ¡x1¡¢x2¡Ê£¨0£¬1£©£¬ÇÒx1¡Ùx2Ôò
f(x1)+f(x2) |
2 |
x1+x2 |
2 |
2 |
x1•x2(x1+x2) |
½â´ð£º½â£º£¨1£©y=log
x£¨»òÆäËüµ×ÔÚ£¨0£¬1£©ÉϵĶÔÊýº¯Êý£©£®¡£¨2·Ö£©
£¨2£©º¯Êýf(x)=x+
ÔÚÇø¼ä£¨0£¬+¡Þ£©ÉϾßÓÐÐÔÖÊL£®¡£¨4·Ö£©
Ö¤Ã÷£ºÈÎÈ¡x1¡¢x2¡Ê£¨0£¬+¡Þ£©£¬ÇÒx1¡Ùx2
Ôò
-f(
)=
(x1+
+x2+
)-(
+
)=
•
-
=
=
¡ßx1¡¢x2¡Ê£¨0£¬+¡Þ£©ÇÒx1¡Ùx2£¬
¡à£¨x1-x2£©2£¾0£¬2x1•x2£¨x1+x2£©£¾0
¼´
-f(
)£¾0£¬
¡à
£¾f(
)
ËùÒÔº¯Êýf(x)=x+
ÔÚÇø¼ä£¨0£¬+¡Þ£©ÉϾßÓÐÐÔÖÊL£®¡£¨8·Ö£©
£¨3£©ÈÎÈ¡x1¡¢x2¡Ê£¨0£¬1£©£¬ÇÒx1¡Ùx2
Ôò
-f(
)=
(
-ax12+
-ax22)-(
-a(
)2)=
-a•
=(x1-x2)2•
¡ßx1¡¢x2¡Ê£¨0£¬1£©ÇÒx1¡Ùx2£¬
¡à£¨x1-x2£©2£¾0£¬4x1•x2£¨x1+x2£©£¾0
ҪʹÉÏʽ´óÓÚÁ㣬±ØÐë2-a•x1•x2£¨x1+x2£©£¾0ÔÚx1¡¢x2¡Ê£¨0£¬1£©ÉϺã³ÉÁ¢£¬
¼´a£¼
£¬
¡àa¡Ü1£¬
¼´ÊµÊýaµÄÈ¡Öµ·¶Î§Îª£¨-¡Þ£¬1]¡£¨14·Ö£©
1 |
2 |
£¨2£©º¯Êýf(x)=x+
1 |
x |
Ö¤Ã÷£ºÈÎÈ¡x1¡¢x2¡Ê£¨0£¬+¡Þ£©£¬ÇÒx1¡Ùx2
Ôò
f(x1)+f(x2) |
2 |
x1+x2 |
2 |
1 |
2 |
1 |
x1 |
1 |
x2 |
x1+x2 |
2 |
2 |
x1+x2 |
1 |
2 |
x1+x2 |
x1•x2 |
2 |
x1+x2 |
(x1+x2)2-4x1•x2 |
2x1•x2(x1+x2) |
(x1-x2)2 |
2x1•x2(x1+x2) |
¡ßx1¡¢x2¡Ê£¨0£¬+¡Þ£©ÇÒx1¡Ùx2£¬
¡à£¨x1-x2£©2£¾0£¬2x1•x2£¨x1+x2£©£¾0
¼´
f(x1)+f(x2) |
2 |
x1+x2 |
2 |
¡à
f(x1)+f(x2) |
2 |
x1+x2 |
2 |
ËùÒÔº¯Êýf(x)=x+
1 |
x |
£¨3£©ÈÎÈ¡x1¡¢x2¡Ê£¨0£¬1£©£¬ÇÒx1¡Ùx2
Ôò
f(x1)+f(x2) |
2 |
x1+x2 |
2 |
1 |
2 |
1 |
x1 |
1 |
x2 |
2 |
x1+x2 |
x1+x2 |
2 |
(x1-x2)2 |
2x1•x2(x1+x2) |
(x1-x2)2 |
4 |
[2-a•x1•x2(x1+x2)] |
4x1•x2(x1+x2) |
¡ßx1¡¢x2¡Ê£¨0£¬1£©ÇÒx1¡Ùx2£¬
¡à£¨x1-x2£©2£¾0£¬4x1•x2£¨x1+x2£©£¾0
ҪʹÉÏʽ´óÓÚÁ㣬±ØÐë2-a•x1•x2£¨x1+x2£©£¾0ÔÚx1¡¢x2¡Ê£¨0£¬1£©ÉϺã³ÉÁ¢£¬
¼´a£¼
2 |
x1•x2(x1+x2) |
¡àa¡Ü1£¬
¼´ÊµÊýaµÄÈ¡Öµ·¶Î§Îª£¨-¡Þ£¬1]¡£¨14·Ö£©
µãÆÀ£º±¾ÌâÒÔº¯ÊýΪÔØÌ壬¿¼²éж¨Ò壬¿¼²éºã³ÉÁ¢ÎÊÌ⣬½âÌâµÄ¹Ø¼üÊǶÔж¨ÒåµÄÀí½â£¬ºã³ÉÁ¢ÎÊÌâ²ÉÓ÷ÖÀë²ÎÊý·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿