ÌâÄ¿ÄÚÈÝ

¶¨Ò壺Èôº¯Êýy=f£¨x£©ÔÚijһÇø¼äDÉÏÈÎÈ¡Á½¸öʵÊýx1¡¢x2£¬ÇÒx1¡Ùx2£¬¶¼ÓÐ
f(x1)+f(x2)
2
£¾f(
x1+x2
2
)
£¬Ôò³Æº¯Êýy=f£¨x£©ÔÚÇø¼äDÉϾßÓÐÐÔÖÊL£®
£¨1£©Ð´³öÒ»¸öÔÚÆ䶨ÒåÓòÉϾßÓÐÐÔÖÊLµÄ¶ÔÊýº¯Êý£¨²»ÒªÇóÖ¤Ã÷£©£®
£¨2£©¶ÔÓÚº¯Êýf(x)=x+
1
x
£¬ÅжÏÆäÔÚÇø¼ä£¨0£¬+¡Þ£©ÉÏÊÇ·ñ¾ßÓÐÐÔÖÊL£¿²¢ÓÃËù¸ø¶¨ÒåÖ¤Ã÷ÄãµÄ½áÂÛ£®
£¨3£©Èôº¯Êýf(x)=
1
x
-ax2
ÔÚÇø¼ä£¨0£¬1£©ÉϾßÓÐÐÔÖÊL£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©Ð´³öµÄº¯ÊýÊÇÏ°¼µÄº¯Êý¼´¿É£»
£¨2£©º¯Êýf(x)=x+
1
x
ÔÚÇø¼ä£¨0£¬+¡Þ£©ÉϾßÓÐÐÔÖÊL£®¸ù¾Ý¶¨Ò壬ÈÎÈ¡x1¡¢x2¡Ê£¨0£¬+¡Þ£©£¬ÇÒx1¡Ùx2
Ö»ÐèÒªÖ¤Ã÷
f(x1)+f(x2)
2
-f(
x1+x2
2
)
£¾0¼´¿É£»
£¨3£©ÈÎÈ¡x1¡¢x2¡Ê£¨0£¬1£©£¬ÇÒx1¡Ùx2Ôò
f(x1)+f(x2)
2
-f(
x1+x2
2
)
£¾0£¬Ö»ÐèÒª2-a•x1•x2£¨x1+x2£©£¾0ÔÚx1¡¢x2¡Ê£¨0£¬1£©ÉϺã³ÉÁ¢£¬¼´a£¼
2
x1x2(x1+x2)
£¬¹Ê¿ÉÇóʵÊýaµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©y=log
1
2
x
£¨»òÆäËüµ×ÔÚ£¨0£¬1£©ÉϵĶÔÊýº¯Êý£©£®¡­£¨2·Ö£©
£¨2£©º¯Êýf(x)=x+
1
x
ÔÚÇø¼ä£¨0£¬+¡Þ£©ÉϾßÓÐÐÔÖÊL£®¡­£¨4·Ö£©
Ö¤Ã÷£ºÈÎÈ¡x1¡¢x2¡Ê£¨0£¬+¡Þ£©£¬ÇÒx1¡Ùx2
Ôò
f(x1)+f(x2)
2
-f(
x1+x2
2
)
=
1
2
(x1+
1
x1
+x2+
1
x2
)-(
x1+x2
2
+
2
x1+x2
)
=
1
2
x1+x2
x1x2
-
2
x1+x2
=
(x1+x2)2-4x1x2
2x1x2(x1+x2)
=
(x1-x2)2
2x1x2(x1+x2)

¡ßx1¡¢x2¡Ê£¨0£¬+¡Þ£©ÇÒx1¡Ùx2£¬
¡à£¨x1-x2£©2£¾0£¬2x1•x2£¨x1+x2£©£¾0
¼´
f(x1)+f(x2)
2
-f(
x1+x2
2
)
£¾0£¬
¡à
f(x1)+f(x2)
2
£¾f(
x1+x2
2
)

ËùÒÔº¯Êýf(x)=x+
1
x
ÔÚÇø¼ä£¨0£¬+¡Þ£©ÉϾßÓÐÐÔÖÊL£®¡­£¨8·Ö£©
£¨3£©ÈÎÈ¡x1¡¢x2¡Ê£¨0£¬1£©£¬ÇÒx1¡Ùx2
Ôò
f(x1)+f(x2)
2
-f(
x1+x2
2
)
=
1
2
(
1
x1
-ax12+
1
x2
-ax22)-(
2
x1+x2
-a(
x1+x2
2
)2)
=
(x1-x2)2
2x1x2(x1+x2)
-a•
(x1-x2)2
4
=(x1-x2)2
[2-a•x1x2(x1+x2)]
4x1x2(x1+x2)

¡ßx1¡¢x2¡Ê£¨0£¬1£©ÇÒx1¡Ùx2£¬
¡à£¨x1-x2£©2£¾0£¬4x1•x2£¨x1+x2£©£¾0
ҪʹÉÏʽ´óÓÚÁ㣬±ØÐë2-a•x1•x2£¨x1+x2£©£¾0ÔÚx1¡¢x2¡Ê£¨0£¬1£©ÉϺã³ÉÁ¢£¬
¼´a£¼
2
x1x2(x1+x2)
£¬
¡àa¡Ü1£¬
¼´ÊµÊýaµÄÈ¡Öµ·¶Î§Îª£¨-¡Þ£¬1]¡­£¨14·Ö£©
µãÆÀ£º±¾ÌâÒÔº¯ÊýΪÔØÌ壬¿¼²éж¨Ò壬¿¼²éºã³ÉÁ¢ÎÊÌ⣬½âÌâµÄ¹Ø¼üÊǶÔж¨ÒåµÄÀí½â£¬ºã³ÉÁ¢ÎÊÌâ²ÉÓ÷ÖÀë²ÎÊý·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø