ÌâÄ¿ÄÚÈÝ
£¨2012•³É¶¼Ä£Ä⣩¸ù¾Ý¶¨ÒåÔÚ¼¯ºÏAÉϵĺ¯Êýy=f£¨x£©£¬¹¹ÔìÒ»¸öÊýÁз¢ÉúÆ÷£¬Æ乤×÷ÔÀíÈçÏ£º
¢ÙÊäÈëÊý¾Ýx0¡ÊA£¬¼ÆËã³öx1=f£¨x0£©£»
¢ÚÈôx0∉A£¬ÔòÊýÁз¢ÉúÆ÷½áÊø¹¤×÷£»
Èôx0¡ÊA£¬ÔòÊä³öx1£¬²¢½«x1·´À¡»ØÊäÈë¶Ë£¬ÔÙ¼ÆËã³öx2=f£¨x1£©£®²¢ÒÀ´Ë¹æÂɼÌÐøÏÂÈ¥£®
ÏÖÔÚÓÐA={x|0£¼x£¼1}£¬f(x)=
£¨m¡ÊN*£©£®
£¨1£©ÇóÖ¤£º¶ÔÈÎÒâx0¡ÊA£¬´ËÊýÁз¢ÉúÆ÷¶¼¿ÉÒÔ²úÉúÒ»¸öÎÞÇîÊýÁÐ{xn}£»
£¨2£©Èôx0=
£¬¼Çan=
£¨n¡ÊN*£©£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÔÚµÃÌõ¼þÏ£¬Ö¤Ã÷
£¼xm¡Ü
£¨m¡ÊN*£©£®
¢ÙÊäÈëÊý¾Ýx0¡ÊA£¬¼ÆËã³öx1=f£¨x0£©£»
¢ÚÈôx0∉A£¬ÔòÊýÁз¢ÉúÆ÷½áÊø¹¤×÷£»
Èôx0¡ÊA£¬ÔòÊä³öx1£¬²¢½«x1·´À¡»ØÊäÈë¶Ë£¬ÔÙ¼ÆËã³öx2=f£¨x1£©£®²¢ÒÀ´Ë¹æÂɼÌÐøÏÂÈ¥£®
ÏÖÔÚÓÐA={x|0£¼x£¼1}£¬f(x)=
mx |
m+1-x |
£¨1£©ÇóÖ¤£º¶ÔÈÎÒâx0¡ÊA£¬´ËÊýÁз¢ÉúÆ÷¶¼¿ÉÒÔ²úÉúÒ»¸öÎÞÇîÊýÁÐ{xn}£»
£¨2£©Èôx0=
1 |
2 |
1 |
xn |
£¨3£©ÔÚµÃÌõ¼þÏ£¬Ö¤Ã÷
1 |
4 |
1 |
3 |
·ÖÎö£º£¨1£©µ±x¡ÊA£¬¼´0£¼x£¼1 ʱ£¬ÓÉm¡ÊN*£¬¿ÉÖª0£¼f£¨x£©£¼1£¬¼´f£¨x£©¡ÊA£¬¹Ê¶ÔÈÎÒâx0¡ÊA£¬ÓÐx1=f£¨x0£©¡ÊA£¬ÓÉ x1¡ÊA ÓÐx2=f£¨x1£©¡ÊA£¬ÒÔ´ËÀàÍÆ£¬¿ÉÒ»Ö±¼ÌÐøÏÂÈ¥£¬´Ó¶ø¿ÉÒÔ²úÉúÒ»¸öÎÞÇîÊýÁУ»
£¨2£©Ò×Ö¤{bn}ÊÇÒÔ
ΪÊ×ÏÒÔ
Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬´Ó¶øÇó³öbn=(
)n£¬´Ó¶øÇó³öan=(
)n+1£»
£¨3£©ÒªÖ¤
£¼xm¡Ü
£¬¼´Ö¤3¡Ü(
)m+1£¼4£¬Ö»ÐèÖ¤2¡Ü(1+
)m£¼3£¬µ±m¡ÊN*ʱ£¬ÀûÓöþÏîʽ¶¨ÀíÒÔ¼°·ÅËõ·¨Ö¤Ã÷²»µÈʽ¼´¿É£®
£¨2£©Ò×Ö¤{bn}ÊÇÒÔ
m+1 |
m |
m+1 |
m |
m+1 |
m |
m+1 |
m |
£¨3£©ÒªÖ¤
1 |
4 |
1 |
3 |
m+1 |
m |
1 |
m |
½â´ð£º½â£º£¨1£©µ±x¡ÊA£¬¼´0£¼x£¼1 ʱ£¬ÓÉm¡ÊN*£¬¿ÉÖªm+1-x£¾0£¬
¡à
£¾0
ÓÖ
-1=
£¼0
¡à
£¼1
¡à0£¼f£¨x£©£¼1£¬¼´f£¨x£©¡ÊA
¹Ê¶ÔÈÎÒâx0¡ÊA£¬ÓÐx1=f£¨x0£©¡ÊA£¬
ÓÉ x1¡ÊA ÓÐx2=f£¨x1£©¡ÊA£¬
x2¡ÊA ÓÐx3=f£¨x2£©¡ÊA£»
ÒÔ´ËÀàÍÆ£¬¿ÉÒ»Ö±¼ÌÐøÏÂÈ¥£¬´Ó¶ø¿ÉÒÔ²úÉúÒ»¸öÎÞÇîÊýÁÐ
£¨2£©ÓÉxn+1=f£¨xn£©=
£¬¿ÉµÃ
=
•
-
£¬
¡àan+1=
an-
£¬
¼´an+1=
(an-1)£®
Áîbn=an-1£¬Ôòbn+1=
bn£¬
ÓÖb1=
¡Ù0£¬
ËùÒÔ{bn}ÊÇÒÔ
ΪÊ×ÏÒÔ
Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ®
bn=(
)n£¬¼´an=(
)n+1
£¨3£©ÒªÖ¤
£¼xm¡Ü
£¬¼´Ö¤3¡Ü(
)m+1£¼4£¬Ö»ÐèÖ¤2¡Ü(1+
)m£¼3£¬
µ±m¡ÊN*ʱ£¬
ÓÐ(1+
)m=
(
)0+
(
)1+¡+
(
)m¡Ý2£¬
ÒòΪ£¬µ±k¡Ý2 ʱ£¬
ÓÉ
(
)k=
£¼
¡Ü
-
£®
ËùÒÔ£¬µ±m¡Ý2ʱ(1+
)m=
(
)0+
(
)1+¡+
(
)m£¬
£¼1+1+£¨1-
£©+£¨
-
£©+¡£¨
-
£©=3-
£¼3
ÓÖµ±m=1ʱ£¬2¡Ü(1+
)m=2£¼3£¬
ËùÒÔ¶ÔÓÚÈÎÒâm¡ÊN*£¬¶¼ÓÐ (1+
)m£¼3
ËùÒÔ¶ÔÓÚÈÎÒâm¡ÊN*£¬¶¼ÓÐÖ¤
£¼xm¡Ü
£®
¡à
mx |
m+1-x |
ÓÖ
mx |
m+1-x |
(m+1)(x-1) |
m+1-x |
¡à
mx |
m+1-x |
¡à0£¼f£¨x£©£¼1£¬¼´f£¨x£©¡ÊA
¹Ê¶ÔÈÎÒâx0¡ÊA£¬ÓÐx1=f£¨x0£©¡ÊA£¬
ÓÉ x1¡ÊA ÓÐx2=f£¨x1£©¡ÊA£¬
x2¡ÊA ÓÐx3=f£¨x2£©¡ÊA£»
ÒÔ´ËÀàÍÆ£¬¿ÉÒ»Ö±¼ÌÐøÏÂÈ¥£¬´Ó¶ø¿ÉÒÔ²úÉúÒ»¸öÎÞÇîÊýÁÐ
£¨2£©ÓÉxn+1=f£¨xn£©=
mxn |
m+1-xn |
1 |
xn+1 |
m+1 |
m |
1 |
x |
1 |
m |
¡àan+1=
m+1 |
m |
1 |
m |
¼´an+1=
m+1 |
m |
Áîbn=an-1£¬Ôòbn+1=
m+1 |
m |
ÓÖb1=
m+1 |
m |
ËùÒÔ{bn}ÊÇÒÔ
m+1 |
m |
m+1 |
m |
bn=(
m+1 |
m |
m+1 |
m |
£¨3£©ÒªÖ¤
1 |
4 |
1 |
3 |
m+1 |
m |
1 |
m |
µ±m¡ÊN*ʱ£¬
ÓÐ(1+
1 |
m |
C | 0 m |
1 |
m |
C | 1 m |
1 |
m |
C | m m |
1 |
m |
ÒòΪ£¬µ±k¡Ý2 ʱ£¬
ÓÉ
C | k m |
1 |
m |
m(m-1)¡(m-k+1 ) |
m |
1 |
k! |
1 |
k! |
1 |
k-1 |
1 |
k |
ËùÒÔ£¬µ±m¡Ý2ʱ(1+
1 |
m |
C | 0 m |
1 |
m |
C | 1 m |
1 |
m |
C | m m |
1 |
m |
£¼1+1+£¨1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n-1 |
1 |
n |
1 |
n |
ÓÖµ±m=1ʱ£¬2¡Ü(1+
1 |
m |
ËùÒÔ¶ÔÓÚÈÎÒâm¡ÊN*£¬¶¼ÓÐ (1+
1 |
m |
ËùÒÔ¶ÔÓÚÈÎÒâm¡ÊN*£¬¶¼ÓÐÖ¤
1 |
4 |
1 |
3 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˵ȱÈÊýÁеÄͨÏʽ£¬ÒÔ¼°ÎÞÇîÊýÁеÄÖ¤Ã÷ºÍ¶þÏîʽ¶¨ÀíÖ¤Ã÷²»µÈʽ£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿