题目内容
(08年成都七中二模理) 如图,直四棱柱ABCD―A1B1C1D1的高为3,底面是边长为4且∠DAB=60°的菱形,
AC∩BD=O,A1C1∩B1D1=O1,E是O1A的中点.
(1)求证:平面O1AC平面O1BD
(2)求二面角O1-BC-D的大小;
(3)求点E到平面O1BC的距离.
解析:(1)∵ABCD为菱形,∴AC⊥BD,又OO1//AA1,AA⊥平面ABCD,
OO1⊥平面ABCD,∴BD⊥OO1,OO1AC=O,
∴BD⊥平面O1AC,平面O1BD⊥平面O1AC……4分
(2)过O作OF⊥BC于F,连接O1F,
∵OO1⊥面AC,∴BC⊥O1F,
∴∠O1FO是二面角O1-BC-D的平面角,
∵OB=2,∠OBF=60°,∴OF=.在Rt△O1OF在,tan∠O1FO=
∴∠O1FO=60° 即二面角O1―BC―D为60°……8分
(3)在△O1AC中,OE是△O1AC的中位线,∴OE∥O1C
∴OE∥O1BC,∵BC⊥面O1OF,∴面O1BC⊥面O1OF,交线O1F.
过O作OH⊥O1F于H,则OH是点O到面O1BC的距离,
∴OH=∴点E到面O1BC的距离等于……12分
解法二:(2)∵OO1⊥平面AC,∴OO1⊥OA,OO1⊥OB,
又OA⊥OB,建立如图所示的空间直角坐标系(如图)
∵底面ABCD是边长为4,∠DAB=60°的菱形,
∴OA=2,OB=2,则A(2,0,0),B(0,2,0),
C(-2,0,0),O1(0,0,3)
设平面O1BC的法向量为=(x,y,z),
则⊥,⊥,
∴,则z=2,则x=-,y=3,
∴=(-,3,2),
而平面AC的法向量=(0,0,3)∴cos<,>=,
设O1-BC-D的平面角为α,
∴cosα=∴α=60°. 故二面角O1-BC-D为60°.
(3)设点E到平面O1BC的距离为d,
∵E是O1A的中点,∴=(-,0,),
则d=∴点E到面O1BC的距离等于。