ÌâÄ¿ÄÚÈÝ
ÉèP1(x1£¬y1)£¬P1(x2£¬y2)£¬¡£¬Pn(xn£¬yn)(n³3£¬nÎN)ÊǶþ´ÎÇúÏßCÉϵĵ㣬ÇÒ¹¹³ÉÁËÒ»¸ö¹«²îd(d¹0)µÄµÈ²îÊýÁУ¬ÆäÖÐOÊÇ×ø±êԵ㣮¼ÇSn=a1+a2+¡+an£®
£¨1£©ÈôCµÄ·½³ÌΪ£®µãP1£¨3£¬0£©¼°S3=162£¬ÇóµãP3µÄ×ø±ê£»£¨Ö»Ðèд³öÒ»¸ö£©
£¨2£©ÈôCµÄ·½³ÌΪy2=2px(p¹0)£®µãP1(0£¬0)£¬¶ÔÓÚ¸ø¶¨µÄ×ÔÈ»Êýn£¬Ö¤Ã÷£º£¨x1+p£©2£¬(x2+p)2£¬¡£¬£¨xn+p£©2³ÉµÈ²îÊýÁУ»
£¨3£©ÈôCµÄ·½³ÌΪ£®µãP1(a£¬0)£¬¶ÔÓÚ¸ø¶¨µÄ×ÔÈ»Êýn£¬µ±¹«²îd±ä»¯Ê±£¬ÇóSnµÄ×îСֵ£®
´ð°¸£º
½âÎö£º
½âÎö£º
£¨1£©£¬ÓÉ£¬µÃ£® ÓÉ¡à µãP3µÄ×ø±ê¿ÉÒÔΪ(£¬3) £¨2£©¶Ôÿ¸ö×ÔÈ»Êýk£¬1£k£n£¬ÓÉÌâÒâ¼°
¡à (x1+p)2£¬(x2+p)2£¬¡£¬(xn+p)2ÊÇÊ×ÏîΪp2,¹«²îΪdµÄµÈ²îÊýÁÐ. £¨3£©½â·¨Ò»£ºÔµãOµ½¶þ´ÎÇúÏßC£ºÉϸ÷µãµÄ×îС¾àÀëΪb£¬×î´ó¾àÀëΪa£® £¬¡à d<0£¬ÇÒ£¬ ¡à £®¡ß n³3£¬£¬¡à ÉϵÝÔö£¬ ¹ÊSnµÄ×îСֵΪ ½â·¨¶þ£º¶Ôÿ¸ö×ÔÈ»Êýk(2£k£n)£¬ ÓÉ ¡ß £¬¡à ÒÔÏÂÓë½â·¨Ò»Ïàͬ£®
|
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿