题目内容

15、在平面几何里有射影定理:设△ABC的两边AB⊥AC,D是A点在BC边上的射影,则AB2=BD•BC.拓展到空间,在四面体A-BCD中,DA⊥面ABC,点O是A在面BCD内的射影,且O在△BCD内,类比平面三角形射影定理,△ABC,△BOC,△BDC三者面积之间关系为
(S△ABC2=S△BOC.S△BDC
分析:这是一个类比推理的题,在由平面图形到空间图形的类比推理中,一般是由点的性质类比推理到线的性质,由线的性质类比推理到面的性质,由已知在平面几何中,(如图所示)若△ABC中,AB⊥AC,AD⊥BC,D是垂足,则AB2=BD•BC,我们可以类比这一性质,推理出若三棱锥A-BCD中,AD⊥面ABC,AO⊥面BCD,O为垂足,则(S△ABC2=S△BOC.S△BDC
解答:解:由已知在平面几何中,
若△ABC中,AB⊥AC,AE⊥BC,E是垂足,
则AB2=BD•BC,
我们可以类比这一性质,推理出:
若三棱锥A-BCD中,AD⊥面ABC,AO⊥面BCD,O为垂足,
则(S△ABC2=S△BOC.S△BDC
故答案为:(S△ABC2=S△BOC.S△BDC
点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网