题目内容

已知,点是圆内一点,直线是以点为中点的弦所在的直线,直线的方程是,则下列结论正确的是(    )

A.,且与圆相交                B.,且与圆相切

C.,且与圆相离                D.,且与圆相离

 

【答案】

C

【解析】

试题分析:以点M为中点的弦所在的直线的斜率是-,直线m∥l,点M(a,b)是圆x2+y2=r2内一点,所以a2+b2<r2,圆心到ax+by=r2,距离是=r,故相离.故选C

考点:本题主要是考查直线与圆的位置关系,两条直线的位置关系,是基础题

点评:解决该试题的关键是求圆心到直线的距离,然后与a2+b2<r2比较,可以判断直线与圆的位置关系,易得两直线的关系

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网