题目内容

已知垂直竖在水平地面上相距20米的两根旗杆的高分别为10米和15米,地面上的动点P到两旗杆顶点的仰角相等,则点P的轨迹是(  )
分析:设两根旗杆AA1、BB1分别在地面A、B两处,不妨设AA1=15m,BB1=10m,地面上的动点P到两旗杆顶点的仰角相等,设满足条件的点为P,则直角△PAA1∽直角△PBB1,因此
PA
PB
=
3
2
,建立平面直角坐标系,求出方程,即可求得结论.
解答:解:设两根旗杆AA1、BB1分别在地面A、B两处,不妨设AA1=15m,BB1=10m,地面上的动点P到两旗杆顶点的仰角相等,
设满足条件的点为P,则直角△PAA1∽直角△PBB1,因此
PA
PB
=
3
2

在地面上以AB所在直线为x轴,以AB的中点0为坐标原点,建立平面直角坐标系,设P(x,y),A(0,10),B(0,-10)则:
(x-10)2+y2
(x+10)2+y2
=
3
2

化简整理得:(x+26)2+y2=576
因此在A、B所在直线上距离B点16米A点36处的点为圆心,以24为半径画圆,则圆上的点到两旗杆顶点的仰角相等,
即:地面上的动点P到两旗杆顶点的仰角相等的点P的轨迹是在A、B所在直线上距离B点16米(距离A点36处)的点为圆心,以24为半径的圆
故选B.
点评:本题考查轨迹方程,考查学生分析解决问题的能力,正确求方程是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网