题目内容
已知向量![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103638076192365/SYS201311031036380761923007_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103638076192365/SYS201311031036380761923007_ST/1.png)
A.-8
B.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103638076192365/SYS201311031036380761923007_ST/2.png)
C.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103638076192365/SYS201311031036380761923007_ST/3.png)
D.8
【答案】分析:先设
,然后表示
,
求其数量积的表达式,再求其最小值.
解答:解:M是直线OP上任意一点(O为坐标原点),设
,k∈R,则
=(1-2k,7-k),
=(5-2k,1-k)
∴
=(1-2k)(5-2k)+(7-k)(1-k)=12-20k+5k2,当k=2时
的最小值是-8.
故选A.
点评:本题考查平面向量的数量积,函数的最值等知识,是基础题.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103638076192365/SYS201311031036380761923007_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103638076192365/SYS201311031036380761923007_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103638076192365/SYS201311031036380761923007_DA/2.png)
解答:解:M是直线OP上任意一点(O为坐标原点),设
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103638076192365/SYS201311031036380761923007_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103638076192365/SYS201311031036380761923007_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103638076192365/SYS201311031036380761923007_DA/5.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103638076192365/SYS201311031036380761923007_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103638076192365/SYS201311031036380761923007_DA/7.png)
故选A.
点评:本题考查平面向量的数量积,函数的最值等知识,是基础题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目