题目内容
已知双曲线与椭圆![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_ST/1.png)
(1)求椭圆与双曲线的离心率e1、e2;
(2)求双曲线的标准方程与渐近线方程;
(3)已知直线
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_ST/2.png)
【答案】分析:(1)椭圆
中,由a=2,c=
,能求出椭圆离心率e1,由双曲线与椭圆离心率之和为
,能求出双曲线的离心率e2.
(2)由椭圆
焦点为F1(-
,0),F2(
,0),双曲线与椭圆
共焦点,知双曲线的焦点为F1(-
,0),F2(
,0),再由双曲线的离心率e2=
.能求出双曲线的标准方程和渐近线方程.
(3)由
,得2x2+4mx+4m2-4=0,直线
与椭圆有两个交点,知△=(4m)2-8(4m2-4)>0,由此能求出m的取值范围.
解答:解:(1)∵椭圆
中,
a=2,c=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/13.png)
∴椭圆离心率e1=
.
∵双曲线与椭圆
的离心率之和为
,
∴双曲线的离心率e2=
=
.
(2)∵椭圆
焦点为F1(-
,0),F2(
,0),
双曲线与椭圆
共焦点,
∴双曲线的焦点为F1(-
,0),F2(
,0),
∵双曲线的离心率e2=
.
∴双曲线的标准方程为
,
∴双曲线的渐近线方程为y=
x.
(3)由
,得2x2+4mx+4m2-4=0,
∵直线
与椭圆有两个交点,
∴△=(4m)2-8(4m2-4)>0,
解得-
.
故m的取值范围是(-
).
点评:本题考查直线与圆锥曲线的位置关系的求法,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/2.png)
(2)由椭圆
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/9.png)
(3)由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/11.png)
解答:解:(1)∵椭圆
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/12.png)
a=2,c=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/13.png)
∴椭圆离心率e1=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/14.png)
∵双曲线与椭圆
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/16.png)
∴双曲线的离心率e2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/18.png)
(2)∵椭圆
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/21.png)
双曲线与椭圆
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/22.png)
∴双曲线的焦点为F1(-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/24.png)
∵双曲线的离心率e2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/25.png)
∴双曲线的标准方程为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/26.png)
∴双曲线的渐近线方程为y=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/27.png)
(3)由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/28.png)
∵直线
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/29.png)
∴△=(4m)2-8(4m2-4)>0,
解得-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/30.png)
故m的取值范围是(-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922019_DA/31.png)
点评:本题考查直线与圆锥曲线的位置关系的求法,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目