题目内容
设(且),g(x)是f(x)的反函数.
(Ⅰ)设关于的方程求在区间[2,6]上有实数解,求t的取值范围;
(Ⅱ)当a=e(e为自然对数的底数)时,证明:;
(Ⅲ)当0<a≤时,试比较与4的大小,并说明理由.
[番茄花园1]1.
【答案】
本小题考产函数、反函数、方程、不等式、导数及其应用等基础知识,考察化归、分类整合
等数学思想方法,以及推理论证、分析与解决问题的能力.
解:(1)由题意,得ax=>0
故g(x)=,x∈(-∞,-1)∪(1,+∞)
由得
t=(x-1)2(7-x),x∈[2,6]
则t'=-3x2+18x-15=-3(x-1)(x-5)
列表如下:
x |
2 |
(2,5) |
5 |
(5,6) |
6 |
t' |
|
+ |
0 |
- |
|
t |
5 |
↗ |
极大值32 |
↘ |
25 |
所以t最小值=5,t最大值=32
所以t的取值范围为[5,32]……………………………………………………5分
(2)
=ln()
=-ln
令u(z)=-lnz2-=-2lnz+z-,z>0
则u'(z)=-=(1-)2≥0
所以u(z)在(0,+∞)上是增函数
又因为>1>0,所以u()>u(1)=0
即ln>0
即………………………………………………………………9分
(3)设a=,则p≥1,1<f(1)=≤3
当n=1时,|f(1)-1|=≤2<4
当n≥2时
设k≥2,k∈N *时,则f(k)=
=1+
所以1<f(k)≤1+
从而n-1<≤n-1+=n+1-<n+1
所以n<<f(1)+n+1≤n+4
综上所述,总有|-n|<4
[番茄花园1]22.
练习册系列答案
相关题目