题目内容
袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为
,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.
(1)求袋中原有白球的个数;
(2)求随机变量ξ的概率分布;
(3)求甲取到白球的概率.
1 | 7 |
(1)求袋中原有白球的个数;
(2)求随机变量ξ的概率分布;
(3)求甲取到白球的概率.
分析:(1)本题是一个等可能事件的概率,设出袋中原有n个白球,写出试验发生包含的事件数和满足条件的事件数,根据等可能事件的概率公式得到关于n的方程,解方程即可.
(2)ξ的所有可能值为:1,2,3,4,5,求出ξ取每一个值时对应的概率,即得分布列,再根据分布列,依据求数学期望的公式求得期望Eξ.
(3)甲先取,甲只有可能在第1次,第3次和第5次取球.这三种情况是互斥关系,根据互斥事件的概率公式得到结果.
(2)ξ的所有可能值为:1,2,3,4,5,求出ξ取每一个值时对应的概率,即得分布列,再根据分布列,依据求数学期望的公式求得期望Eξ.
(3)甲先取,甲只有可能在第1次,第3次和第5次取球.这三种情况是互斥关系,根据互斥事件的概率公式得到结果.
解答:解:(1)设袋中原有n个白球,由题意知
=
=
=
…(3分)
∴n(n-1)=6得n=3或n=-2(舍去),
所以袋中原有3个白球.…(5分)
(2)由题意,ξ的可能取值为1,2,3,4,5,
所以P(ξ=1)=
; P(ξ=2)=
=
;P(ξ=3)=
=
;
P(ξ=4)=
=
;P(ξ=5)=
=
…(10分)
所以ξ的分布列为:
…(12分)
(3)因为甲先取,所以甲只有可能在第1次,第3次和第5次取球,记”甲取到白球”为事件A,
由题意可得:P(A)=P(”ξ=1”,或”ξ=3”,或”ξ=5”)
∵事件”ξ=1”,或”ξ=3”,或”ξ=5”两两互斥,
∴P(A)=P(ξ=1)+P(ξ=3)+P(ξ=5)=
…(16分)
1 |
7 |
| ||
|
| ||
|
n(n-1) |
7×6 |
∴n(n-1)=6得n=3或n=-2(舍去),
所以袋中原有3个白球.…(5分)
(2)由题意,ξ的可能取值为1,2,3,4,5,
所以P(ξ=1)=
3 |
7 |
4×3 |
7×6 |
2 |
7 |
4×3×3 |
7×6×5 |
6 |
35 |
P(ξ=4)=
4×3×2×3 |
7×6×5×4 |
3 |
35 |
4×3×2×1×3 |
7×6×5×4×3 |
1 |
35 |
所以ξ的分布列为:
ξ | 1 | 2 | 3 | 4 | 5 | ||||||||||
P |
|
|
|
|
|
(3)因为甲先取,所以甲只有可能在第1次,第3次和第5次取球,记”甲取到白球”为事件A,
由题意可得:P(A)=P(”ξ=1”,或”ξ=3”,或”ξ=5”)
∵事件”ξ=1”,或”ξ=3”,或”ξ=5”两两互斥,
∴P(A)=P(ξ=1)+P(ξ=3)+P(ξ=5)=
22 |
35 |
点评:本题考查随机事件的概率的求法,以及求离散型随机变量的分布列和数学期望的方法.
练习册系列答案
相关题目