题目内容

(2013•辽宁)已知三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为(  )
分析:通过球的内接体,说明几何体的侧面对角线是球的直径,求出球的半径.
解答:解:因为三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,
所以三棱柱的底面是直角三角形,侧棱与底面垂直,侧面B1BCC1,经过球的球心,球的直径是其对角线的长,
因为AB=3,AC=4,BC=5,BC1=
52+122
=13

所以球的半径为:
13
2

故选C.
点评:本题考查球的内接体与球的关系,球的半径的求解,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网