题目内容
已知各项均为正数的数列满足
,且
,其中
.
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列满足
是否存在正整数m、n(1<m<n),使得
成等比数列?若存在,求出所有的m、n的值,若不存在,请说明理由。
【答案】
(Ⅰ)数列的通项公式为
;(Ⅱ)存在,
,
.
【解析】
试题分析:(Ⅰ)求数列的通项公式,首先须知道数列
的特征,由题意
可得,
,由于各项均为正数,故有
即
,这样得到数列
是公比为
的等比数列,由
可求出
,从而可得数列
的通项公式;(Ⅱ)设数列
满足
是否存在正整数
,使得
成等比数列,首先求出数列
的通项公式,
,然后假设存在正整数
,使得
成等比数列,则
,整理可得
,只要
即可,解不等式求出
的范围,看是否有正整数,从而的结论.
试题解析:(Ⅰ)因为即
又所以有
即
所以数列是公比为
的等比数列
由得
解得
。
从而,数列的通项公式为
。
6分
(II)=
,若
成等比数列,则
,
即.
由,可得
,
所以,解得:
。
又,且
,所以
,此时
.
故当且仅当,
使得
成等比数列。 13分
考点:等比数列的定义,及通项公式,探索性命题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目