题目内容
已知奇函数f(x)在区间(-∞,+∞)上是单调递减函数, ,,∈R且+>0, +>0, +>0.试说明f()+f()+f()的值与0的关系.
f()+f()+f()<0
解析:
由+>0,得>-.
∵f(x)在R上是单调减函数,∴f()<f(-).
又∵f(x)为奇函数,∴f()<-f(),∴f()+f()<0,
同理f()+f()<0,f()+f()<0,
∴f()+f()+f()<0.
练习册系列答案
相关题目
题目内容
已知奇函数f(x)在区间(-∞,+∞)上是单调递减函数, ,,∈R且+>0, +>0, +>0.试说明f()+f()+f()的值与0的关系.
f()+f()+f()<0
由+>0,得>-.
∵f(x)在R上是单调减函数,∴f()<f(-).
又∵f(x)为奇函数,∴f()<-f(),∴f()+f()<0,
同理f()+f()<0,f()+f()<0,
∴f()+f()+f()<0.