题目内容

己知函数f(x)=
x2
1+x2
,那么f(1)+f(2)+f(3)+…+f(2009)+f(
1
2
)+f(
1
3
)+…+f(
1
2009
)
=(  )
分析:题目中给出了函数解析式,当然可以逐项求解,再相加.审题后,应当注意到所给的自变量的取值有特点:倒数关系,由此应先考虑f(x)+f(
1
x
)的结果的特殊性,以期减少重复的运算.
解答:解:∵f(x)=
x2
1+x2
,∴f(x)+f(
1
x
)=
x2
1+x2
+
(
1
x
)
2
1+(
1
x
)
2
=
x2
1+x2
+
1
x2+1
=1
∴f(1)+f(2)+f(3)+…+f(2009)+f(
1
2
)+f(
1
3
)+…+f(
1
2009
)

=f(1)+[f(2)+f(
1
2
)]+f(3)+f(
1
3
)]+…+[f(2009)+f(
1
2009
)]
=
1
2
+1+1+…+1
=2008
1
2

故选:D.
点评:本题考查函数值求解,函数性质.意识到先考虑f(x)+f(
1
x
)的结果的特殊性,是本题的关键,精彩之处.也是良好数学素养的体现.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网