题目内容
【题目】如图,单位圆上有一点,点以点为起点按逆时针方向以每秒弧度作圆周运动,点的纵坐标是关于时间的函数,记作.
(1)当时,求;
(2)若将函数向左平移个单位长度后,得到的曲线关于轴对称,求的最小正值,并求此时在的值域.
【答案】(1);(2)最小正值为3;值域为.
【解析】
(1)由题意利用任意角的三角函数的定义求得初相,再根据正弦函数的周期性,可得,代入,即可求出结果;
(2)根据图像平移可知,又是偶函数,所以,,由此可得最小值为3,可得,再根据三角函数的性质,即可求出结果.
(1)点是单位圆上一点,它从初始位置开始,按逆时针方向以每秒弧度作圆周运动,设初相为,∴,∴.
所以,当时,.
(2)图像关于轴对称,则是偶函数,则,,得,,最小值为3.此时
,
,,∴.
【题目】某单位为促进职工业务技能提升,对该单位120名职工进行一次业务技能测试,测试项目共5项.现从中随机抽取了10名职工的测试结果,将它们编号后得到它们的统计结果如下表(表1)所示(“√”表示测试合格,“×”表示测试不合格).
表1:
编号\测试项目 | 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
规定:每项测试合格得5分,不合格得0分.
(1)以抽取的这10名职工合格项的项数的频率代替每名职工合格项的项数的概率.
①设抽取的这10名职工中,每名职工测试合格的项数为,根据上面的测试结果统计表,列出的分布列,并估计这120名职工的平均得分;
②假设各名职工的各项测试结果相互独立,某科室有5名职工,求这5名职工中至少有4人得分不少于20分的概率;
(2)已知在测试中,测试难度的计算公式为,其中为第项测试难度,为第项合格的人数,为参加测试的总人数.已知抽取的这10名职工每项测试合格人数及相应的实测难度如下表(表2):
表2:
测试项目 | 1 | 2 | 3 | 4 | 5 |
实测合格人数 | 8 | 8 | 7 | 7 | 2 |
定义统计量,其中为第项的实测难度,为第项的预测难度().规定:若,则称该次测试的难度预测合理,否则为不合理,测试前,预估了每个预测项目的难度,如下表(表3)所示:
表3:
测试项目 | 1 | 2 | 3 | 4 | 5 |
预测前预估难度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
判断本次测试的难度预估是否合理.