题目内容
(06年湖北卷文)(12分)
如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为1,M是底面BC边上的中点,N是侧棱CC1上的点,且CN=2C1N.
(Ⅰ)求二面角B1-AM-N的平面角的余弦值;
(Ⅱ)求点B1到平面AMN的距离。
解析:解法1:(Ⅰ)因为M是底面BC边上的中点,所以AMBC,又AMC,所以AM面BC,从而AMM, AMNM,所以MN为二面角,―AM―N的平面角。又M=,MN=,
连N,得N=,在MN中,由余弦定理得。故所求二面角―AM―N的平面角的余弦值为。
(Ⅱ)过在面内作直线,为垂足。又平面,所以AMH。于是H平面AMN,故H即为到平面AMN的距离。在中,H=M。故点到平面AMN的距离为1。
解法2:(Ⅰ)建立如图所示的空间直角坐标系,
则(0,0,1),M(0,,0),
C(0,1,0), N (0,1,) , A (),所以,
,,。
因为
所以,同法可得。
故为二面角―AM―N的平面角
∴=
故所求二面角―AM―N的平面角的余弦值为。
(Ⅱ)设n=(x,y,z)为平面AMN的一个法向量,则由得
故可取
设与n的夹角为a,则。
所以到平面AMN的距离为。
练习册系列答案
相关题目