题目内容
已知动点P与定点M(1,1)为起点的向量与向量
=(4,-6)垂直,则动点P的轨迹是
a |
2x-3y+1=0
2x-3y+1=0
.分析:设P(x,y),则由题意可得,
⊥
,从而可得
•
=4(x-1)-6(y-1)=0,整理可求
MP |
a |
MP |
a |
解答:解:设P(x,y),则
=(x-1,y-1)
由题意可得,
⊥
∴
•
=4(x-1)-6(y-1)=0
∴2x-3y+1=0(x≠1)
故答案为2x-3y+1=0
MP |
由题意可得,
MP |
a |
∴
MP |
a |
∴2x-3y+1=0(x≠1)
故答案为2x-3y+1=0
点评:本题主要考查了向量数量积的性质
⊥
?
•
=0的应用,属于基础试题
a |
b |
a |
b |
练习册系列答案
相关题目