题目内容
在△OAB中,C是AB边上一点,且BC |
CA |
OA |
a |
OB |
b |
a |
b |
OC |
分析:用向量共线及三角形法则求
,再用三角形法则求
BC |
OC |
解答:解:∵
=λ(λ>0),
∴
=
在△OAB中,
=
,
=
∴
=
-
=
-
∴
=
(
-
)
在△OCB中,
=
+
=
+
(
-
)=
+
答:
=
+
BC |
CA |
∴
BC |
λ |
λ+1 |
BA |
在△OAB中,
OA |
a |
OB |
b |
∴
BA |
OA |
OB |
a |
b |
∴
BC |
λ |
λ+1 |
a |
b |
在△OCB中,
OC |
OB |
BC |
b |
λ |
λ+1 |
a |
b |
λ |
λ+1 |
a |
1 |
λ+1 |
b |
答:
OC |
λ |
λ+1 |
a |
1 |
λ+1 |
b |
点评:考查向量共线定理、向量加减运算的三角形法则.
练习册系列答案
相关题目