题目内容
在m(m≥2)个不同数的排列P1P2…Pn中,若1≤i<j≤m时Pi>Pj(即前面某数大于后面某数),则称Pi与Pj构成一个逆序,一个排列的全部逆序的总数称为该排列的逆序数。记排列(n+1)n(n-1)…321的逆序数为an,如排列21的逆序数a1=1,排列321的逆序数a3=6。
(1)求a4、a5,并写出an的表达式;
(2)令,证明2n<b1+b2+…+bn<2n+3,n=1,2,…。
(1)求a4、a5,并写出an的表达式;
(2)令,证明2n<b1+b2+…+bn<2n+3,n=1,2,…。
解:(1)由已知得
。
(2)因为
所以
又因为
所以
=
综上。
。
(2)因为
所以
又因为
所以
=
综上。
练习册系列答案
相关题目