题目内容

经过点且与直线相切的动圆的圆心轨迹为.点在轨迹上,且关于轴对称,过线段(两端点除外)上的任意一点作直线,使直线与轨迹在点处的切线平行,设直线与轨迹交于点

(1)求轨迹的方程;

(2)证明:

(3)若点到直线的距离等于,且△的面积为20,求直线的方程。

(1)方法1:设动圆圆心为,依题意得,

整理,得.所以轨迹的方程为

方法2:设动圆圆心为,依题意得点到定点的距离和点到定直线的距离相等,

根据抛物线的定义可知,动点的轨迹是抛物线.

且其中定点为焦点,定直线为准线.

所以动圆圆心的轨迹的方程为

(2)由(1)得,即,则

设点,由导数的几何意义知,直线的斜率为

由题意知点.设点

因为

由于,即

所以

(3)方法1:由点的距离等于,可知

不妨设点上方(如图),即,直线的方程为:

解得点的坐标为

所以

由(2)知,同理可得

所以△的面积

解得

时,点的坐标为

直线的方程为,即

时,点的坐标为

直线的方程为,即

方法2:由点的距离等于,可知

由(2)知,所以,即

由(2)知

所以

.        ①

由(2)知.           ②

不妨设点上方(如图),即,由①、②解得

因为

同理. 

以下同方法1.

【解析】

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网